Compressibility effects on mixing layer in Rayleigh–Taylor turbulence

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Cheng-Quan Fu , Zhiye Zhao , Pei Wang , Nan-Sheng Liu , Xi-Yun Lu
{"title":"Compressibility effects on mixing layer in Rayleigh–Taylor turbulence","authors":"Cheng-Quan Fu ,&nbsp;Zhiye Zhao ,&nbsp;Pei Wang ,&nbsp;Nan-Sheng Liu ,&nbsp;Xi-Yun Lu","doi":"10.1016/j.physd.2025.134643","DOIUrl":null,"url":null,"abstract":"<div><div>The compressibility effects on the mixing layer are examined in Rayleigh–Taylor (RT) turbulence via direct numerical simulation at a high Atwood number of 0.9 and three typical Mach numbers (0.32, 0.71, and 1). The focus has been on the evolution of the mixing layer and the generation of kinetic energy. Specifically, a novel finding emerges at high Atwood number, where enhanced compressibility with increasing Mach number leads to a mean flow directed opposite to gravity in front of the bubble mixing layer. This mean flow, induced by compressibility, causes the width of the bubble layer in compressible RT turbulence to deviate from the quadratic growth observed in the incompressible case. It is further established that this deviation can be modeled by dilatation within the mean flow region. Moreover, the compressibility significantly influences the generation of global kinetic energy at high Mach numbers. The global kinetic energy of RT turbulence with high compressibility is primarily derived from the conversion of internal energy through pressure-dilatation work, rather than from the conversion of potential energy. It is also revealed that the mean flow leads to the conversion of kinetic energy into potential energy, while the fluctuating flow converts the potential energy into kinetic energy within the mixing layer.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134643"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001228","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The compressibility effects on the mixing layer are examined in Rayleigh–Taylor (RT) turbulence via direct numerical simulation at a high Atwood number of 0.9 and three typical Mach numbers (0.32, 0.71, and 1). The focus has been on the evolution of the mixing layer and the generation of kinetic energy. Specifically, a novel finding emerges at high Atwood number, where enhanced compressibility with increasing Mach number leads to a mean flow directed opposite to gravity in front of the bubble mixing layer. This mean flow, induced by compressibility, causes the width of the bubble layer in compressible RT turbulence to deviate from the quadratic growth observed in the incompressible case. It is further established that this deviation can be modeled by dilatation within the mean flow region. Moreover, the compressibility significantly influences the generation of global kinetic energy at high Mach numbers. The global kinetic energy of RT turbulence with high compressibility is primarily derived from the conversion of internal energy through pressure-dilatation work, rather than from the conversion of potential energy. It is also revealed that the mean flow leads to the conversion of kinetic energy into potential energy, while the fluctuating flow converts the potential energy into kinetic energy within the mixing layer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信