Manipulating the Li/Ni/Fe mixed configuration promotes structure stability of Li-rich layered oxides

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yanli Nan , Zewen Liu , Zhen Wu , Peifan Qu , Zhaoyu Wang , Zige Tai , Hao Wang , Shenghua Chen , Yuanzhen Chen , Shengwu Guo , Yan Liu
{"title":"Manipulating the Li/Ni/Fe mixed configuration promotes structure stability of Li-rich layered oxides","authors":"Yanli Nan ,&nbsp;Zewen Liu ,&nbsp;Zhen Wu ,&nbsp;Peifan Qu ,&nbsp;Zhaoyu Wang ,&nbsp;Zige Tai ,&nbsp;Hao Wang ,&nbsp;Shenghua Chen ,&nbsp;Yuanzhen Chen ,&nbsp;Shengwu Guo ,&nbsp;Yan Liu","doi":"10.1016/j.jcis.2025.137446","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-rich layered oxides (LLOs) are highly promising for applications in Li-ions batteries as the cathode materials due to their high energy density. However, LLOs often suffer from significant capacity and voltage loss due to the instability of the layered structure when in the deep extraction state. This inherent instability poses a considerable challenge to their practical application. Herein, a distinctive Li/Ni/Fe mixed configuration was constructed by using the exchange mechanism of Fe ions with Li and Ni ions in the Li layer. This configuration not only improves structural stability, but also expands the layer spacing to accelerate Li<sup>+</sup> diffusion. Density functional theory (DFT) calculations indicate that the presence of Li/Ni/Fe mixed configuration leads to more Li − O − Li configurations and decreasing the characteristic energy gap above the Fermi energy level. This configuration also effectively increases the migration energy barrier of transition metal (TM) ions and oxygen (O) vacancy formation energy, which reducing the irreversible migration of TM ions and the escape of O. The target material exhibits high-capacity retention of 82.1 % after 300 cycles at 1C, accompanied by a minimal voltage fading rate of just 0.33 mV/cycle. This study offers innovative strategies to enhance the stability of LLOs, facilitating their widespread commercial use.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137446"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008379","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-rich layered oxides (LLOs) are highly promising for applications in Li-ions batteries as the cathode materials due to their high energy density. However, LLOs often suffer from significant capacity and voltage loss due to the instability of the layered structure when in the deep extraction state. This inherent instability poses a considerable challenge to their practical application. Herein, a distinctive Li/Ni/Fe mixed configuration was constructed by using the exchange mechanism of Fe ions with Li and Ni ions in the Li layer. This configuration not only improves structural stability, but also expands the layer spacing to accelerate Li+ diffusion. Density functional theory (DFT) calculations indicate that the presence of Li/Ni/Fe mixed configuration leads to more Li − O − Li configurations and decreasing the characteristic energy gap above the Fermi energy level. This configuration also effectively increases the migration energy barrier of transition metal (TM) ions and oxygen (O) vacancy formation energy, which reducing the irreversible migration of TM ions and the escape of O. The target material exhibits high-capacity retention of 82.1 % after 300 cycles at 1C, accompanied by a minimal voltage fading rate of just 0.33 mV/cycle. This study offers innovative strategies to enhance the stability of LLOs, facilitating their widespread commercial use.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信