Yiqian Xu, Qimu Yang, Yi Yu, Xuesong Zhang, Manman Pan, Dandan Jiang, Yuying Dong, Peng Gao, Lei Hua*, Chuang Chen* and Haiyang Li*,
{"title":"Pressure-Tunable Photoionization Tandem Ion Mobility Spectrometry for Investigating Proton Transfer Reactions of Binary Systems","authors":"Yiqian Xu, Qimu Yang, Yi Yu, Xuesong Zhang, Manman Pan, Dandan Jiang, Yuying Dong, Peng Gao, Lei Hua*, Chuang Chen* and Haiyang Li*, ","doi":"10.1021/jasms.5c0005110.1021/jasms.5c00051","DOIUrl":null,"url":null,"abstract":"<p >Investigating and manipulating the ion–molecule reactions within the ionization source of ion mobility spectrometry (IMS) or mass spectrometry can contribute to developing advanced ionization sources and novel analytical techniques. In this study, a pressure-tunable photoionization tandem ion mobility spectrometer (PI-tandem-IMS) was developed to investigate the ionization suppression caused by unusual proton transfer reactions in dual-analyte systems in which high proton affinity (PA) ions are deprotonated by low PA molecules. The proton transfer reaction mechanisms in the toluene–acetone and toluene–ethanol systems were studied. The experimental results showed the linear correlation between the ln(<i>S</i><sub>X2H</sub><sup>+</sup>·<i>K</i><sub>0(T</sub><sup>+</sup><sub>)</sub>/<i>S</i><sub>T</sub><sup>+</sup>·<i>K</i><sub>0(X2H</sub><sup>+</sup><sub>)</sub> + 1) and the square of the reactant concentration <i>c</i><sub>X</sub><sup>2</sup>, as well as the cubic power of the pressure <i>p</i><sup>3</sup>. Based on this, the generation of the proton-bound dimers in the toluene–acetone and toluene–ethanol systems was assigned as a termolecular process. The reaction rate coefficients <i>k</i> of the toluene–acetone and toluene–ethanol systems were calculated at different temperatures, and the Arrhenius plot showed that rate coefficients were both negatively correlated with temperature, implying that elevated temperatures suppress the proton transfer reaction. At 313.15 K, the calculated <i>k</i> values for the toluene–acetone and the toluene–ethanol systems were 2.2 × 10<sup>–26</sup> cm<sup>6</sup>/s and 5.2 × 10<sup>–28</sup> cm<sup>6</sup>/s, respectively, suggesting a higher inhibitory effect of acetone on toluene ionization than that of ethanol. Besides, the suppressive effect of reducing the pressure or increasing the reaction region electric field strength on proton transfer reactions was shown, which demonstrated the PI-tandem IMS was a good tool for understanding ion–molecule reactions in the ionization source.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 4","pages":"914–922 914–922"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.5c00051","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating and manipulating the ion–molecule reactions within the ionization source of ion mobility spectrometry (IMS) or mass spectrometry can contribute to developing advanced ionization sources and novel analytical techniques. In this study, a pressure-tunable photoionization tandem ion mobility spectrometer (PI-tandem-IMS) was developed to investigate the ionization suppression caused by unusual proton transfer reactions in dual-analyte systems in which high proton affinity (PA) ions are deprotonated by low PA molecules. The proton transfer reaction mechanisms in the toluene–acetone and toluene–ethanol systems were studied. The experimental results showed the linear correlation between the ln(SX2H+·K0(T+)/ST+·K0(X2H+) + 1) and the square of the reactant concentration cX2, as well as the cubic power of the pressure p3. Based on this, the generation of the proton-bound dimers in the toluene–acetone and toluene–ethanol systems was assigned as a termolecular process. The reaction rate coefficients k of the toluene–acetone and toluene–ethanol systems were calculated at different temperatures, and the Arrhenius plot showed that rate coefficients were both negatively correlated with temperature, implying that elevated temperatures suppress the proton transfer reaction. At 313.15 K, the calculated k values for the toluene–acetone and the toluene–ethanol systems were 2.2 × 10–26 cm6/s and 5.2 × 10–28 cm6/s, respectively, suggesting a higher inhibitory effect of acetone on toluene ionization than that of ethanol. Besides, the suppressive effect of reducing the pressure or increasing the reaction region electric field strength on proton transfer reactions was shown, which demonstrated the PI-tandem IMS was a good tool for understanding ion–molecule reactions in the ionization source.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives