Impact of Multipole Fields on the Performance and Dynamics of Quadrupole Linear Ion Traps

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Fulong Deng, Xingliang He, Hongen Sun, Bin Wu, Yixiang Duan and Zhongjun Zhao*, 
{"title":"Impact of Multipole Fields on the Performance and Dynamics of Quadrupole Linear Ion Traps","authors":"Fulong Deng,&nbsp;Xingliang He,&nbsp;Hongen Sun,&nbsp;Bin Wu,&nbsp;Yixiang Duan and Zhongjun Zhao*,&nbsp;","doi":"10.1021/jasms.4c0048810.1021/jasms.4c00488","DOIUrl":null,"url":null,"abstract":"<p >Additional multipole fields are unavoidable in real quadrupole linear ion traps (QLITs) and play a crucial role in influencing their performance. In this study, the impact of these multipole fields on ion ejection and dynamics in QLITs is exhaustively analyzed using a vectorized Runge–Kutta method and a comprehensive theoretical model of ion vibration involving all the common multipole fields. The comparison of nonlinear resonance under different added multipole fields reveals obvious ion ejection from hexapole and octopole resonances as well as multiple resonance points in most multipole fields. Ion ejection with dipole excitation under these fields demonstrates distinct variations at different excitation working values, influenced by the inherent power distribution of ion motion in a linear quadrupole and the energy dispersion caused by the added multipole fields at varying stability parameters. Furthermore, theoretical and numerical analyses of ion dynamics mutually validate each other, offering the first comprehensive demonstration of ion excitation responses under various multipole fields across a wide stability range. The results show that for positive even-order multipole fields, forward scans lead to lower and more stable maximum amplitude responses compared to reverse scans, while the opposite is true for negative fields. In hexapole fields, the forward scan responses are lower than the reverse scan responses, and both increase sharply near nonlinear resonance points, regardless of field polarity. This work provides a thorough theoretical foundation for optimizing multipole field applications in QLITs.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 4","pages":"811–822 811–822"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00488","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Additional multipole fields are unavoidable in real quadrupole linear ion traps (QLITs) and play a crucial role in influencing their performance. In this study, the impact of these multipole fields on ion ejection and dynamics in QLITs is exhaustively analyzed using a vectorized Runge–Kutta method and a comprehensive theoretical model of ion vibration involving all the common multipole fields. The comparison of nonlinear resonance under different added multipole fields reveals obvious ion ejection from hexapole and octopole resonances as well as multiple resonance points in most multipole fields. Ion ejection with dipole excitation under these fields demonstrates distinct variations at different excitation working values, influenced by the inherent power distribution of ion motion in a linear quadrupole and the energy dispersion caused by the added multipole fields at varying stability parameters. Furthermore, theoretical and numerical analyses of ion dynamics mutually validate each other, offering the first comprehensive demonstration of ion excitation responses under various multipole fields across a wide stability range. The results show that for positive even-order multipole fields, forward scans lead to lower and more stable maximum amplitude responses compared to reverse scans, while the opposite is true for negative fields. In hexapole fields, the forward scan responses are lower than the reverse scan responses, and both increase sharply near nonlinear resonance points, regardless of field polarity. This work provides a thorough theoretical foundation for optimizing multipole field applications in QLITs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信