Interplay of Endoplasmic Reticulum Stress, Inflammation, Apoptosis, and Oxidative Stress in Corticosteroid-Induced Anxiety and Depression: Exploring Therapeutic Potential of Hydrogen Sulfide and Sertraline
May A. Azzam, Asmaa A. ElMonier*, Enas S. Gad and Mai A. Abd-Elmawla,
{"title":"Interplay of Endoplasmic Reticulum Stress, Inflammation, Apoptosis, and Oxidative Stress in Corticosteroid-Induced Anxiety and Depression: Exploring Therapeutic Potential of Hydrogen Sulfide and Sertraline","authors":"May A. Azzam, Asmaa A. ElMonier*, Enas S. Gad and Mai A. Abd-Elmawla, ","doi":"10.1021/acschemneuro.5c0005710.1021/acschemneuro.5c00057","DOIUrl":null,"url":null,"abstract":"<p >Prolonged exposure to corticosteroids (CORTs) triggers depression and anxiety symptoms either endogenously or exogenously via stimulating endoplasmic reticulum stress (ERS). The study assessed the therapeutic implications of hydrogen sulfide (H<sub>2</sub>S) versus sertraline (SERT) in alleviating anxiety and depression induced by CORTs through the modulation of ERS and its inflammatory, oxidative, and apoptotic consequences. Rats were subdivided into four groups: control, CORT (20 mg/kg), NaHS (100 μmol/kg), and SERT (10 mg/kg) for 21 days. Behavioral and histological examinations of the cerebral cortex were performed. The levels of CHOP, GADD34, EIF2AK3, GRP78, caspase 3, and miR-146a were analyzed using qRT-PCR. The levels of CORTs, serotonin, BDNF, TNF-α, BCL2, NRF2, and ATF4 were measured using ELISA, whereas those of IL-1β and BAX were measured using immunohistochemical techniques. Total and phosphorylated PERK were assessed via western blotting, whereas GSH and MDA were assessed via a colorimetric assay. In the present study, CORTs upregulated the gene expression of CHOP, GADD34, EIF2AK3, GRP78, and Caspase 3, whereas it downregulated that of miR-146a. The levels of serotonin, BDNF, BCL2, GSH, and NRF2 were decreased, whereas those of ATF4, TNF-α, IL-1β, BAX, and MDA were elevated. On the contrary, NaHS and SERT reversed all the above-mentioned changes. H<sub>2</sub>S shows promise in counteracting anxiety and depression symptoms induced by CORTs by targeting ERS cascades, mitigating inflammation, oxidative insults, and apoptosis in the cerebral cortex. H<sub>2</sub>S elicits neuroprotective effects by targeting the miR-146a-3p/GRP78/CHOP/PERK/ATF4/GADD34 signaling pathway and regulating apoptotic markers BAX/BCL2 and inflammatory markers TNF-α and/IL-1β. Compared with SERT, H<sub>2</sub>S exhibited superior anxiolytic and antidepressive effects.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 7","pages":"1361–1376 1361–1376"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00057","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged exposure to corticosteroids (CORTs) triggers depression and anxiety symptoms either endogenously or exogenously via stimulating endoplasmic reticulum stress (ERS). The study assessed the therapeutic implications of hydrogen sulfide (H2S) versus sertraline (SERT) in alleviating anxiety and depression induced by CORTs through the modulation of ERS and its inflammatory, oxidative, and apoptotic consequences. Rats were subdivided into four groups: control, CORT (20 mg/kg), NaHS (100 μmol/kg), and SERT (10 mg/kg) for 21 days. Behavioral and histological examinations of the cerebral cortex were performed. The levels of CHOP, GADD34, EIF2AK3, GRP78, caspase 3, and miR-146a were analyzed using qRT-PCR. The levels of CORTs, serotonin, BDNF, TNF-α, BCL2, NRF2, and ATF4 were measured using ELISA, whereas those of IL-1β and BAX were measured using immunohistochemical techniques. Total and phosphorylated PERK were assessed via western blotting, whereas GSH and MDA were assessed via a colorimetric assay. In the present study, CORTs upregulated the gene expression of CHOP, GADD34, EIF2AK3, GRP78, and Caspase 3, whereas it downregulated that of miR-146a. The levels of serotonin, BDNF, BCL2, GSH, and NRF2 were decreased, whereas those of ATF4, TNF-α, IL-1β, BAX, and MDA were elevated. On the contrary, NaHS and SERT reversed all the above-mentioned changes. H2S shows promise in counteracting anxiety and depression symptoms induced by CORTs by targeting ERS cascades, mitigating inflammation, oxidative insults, and apoptosis in the cerebral cortex. H2S elicits neuroprotective effects by targeting the miR-146a-3p/GRP78/CHOP/PERK/ATF4/GADD34 signaling pathway and regulating apoptotic markers BAX/BCL2 and inflammatory markers TNF-α and/IL-1β. Compared with SERT, H2S exhibited superior anxiolytic and antidepressive effects.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research