Chris Heintz, Hendrik Kersten, Thorsten Benter and Walter Wißdorf*,
{"title":"Signatures of Charged Droplets from ESI: A Statistical Analysis of Non-summed Mass Spectra Compared to APCI","authors":"Chris Heintz, Hendrik Kersten, Thorsten Benter and Walter Wißdorf*, ","doi":"10.1021/jasms.4c0050810.1021/jasms.4c00508","DOIUrl":null,"url":null,"abstract":"<p >Electrospray ionization (ESI) is the most widely used technique for the ionization of liquid samples, for example, from liquid chromatography (LC) coupled to mass spectrometry. Recent experiments demonstrate the penetration of charged droplets or at least large clusters into the high-vacuum region of different ESI mass spectrometers. Using a Bruker micrOTOF equipped with a standard Bruker Apollo ESI source, we demonstrated that time-of-flight (TOF) MS can detect signatures of these droplets by analyzing the statistics of individual TOF spectra, resulting from a single orthogonal acceleration (oa) stage pulse. A custom experimental setup allows additional online monitoring of the ion current in the oa-stage by coupling an oscilloscope to an auxiliary secondary electron multiplier (SEM). The results obtained with ESI are compared to mass spectra recorded under similar conditions using atmospheric pressure chemical ionization (APCI). Our findings reveal that the observation of droplet signatures is unique to the ESI process, with their frequency and intensity strongly determined by the ion source settings. We also report that the majority of the individual spectra obtained do not contain ion signals. The observed intensity in the summed spectra stems from a few very intense spectra, which result from single droplet fragment bursts. In contrast, APCI provides an almost continuous and stable ion current, without intense signal bursts characteristic for ESI. Additional optical monitoring strongly suggests that these signatures are not a result of spray instability, but are common even for undisturbed, continuous spray operation. The variation of ion source parameters shows that specific capillary voltages, nebulizer pressures, and dry gas flows lead to an increase in the frequency of droplet occurrence. Since these parameters are fundamental and frequently altered in analytical measurements, the results reported in this contribution underscore the significance of understanding droplet dynamics in ESI-MS and provide insights regarding droplets affecting the ESI signal intensity recorded in analytical runs.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 4","pages":"839–849 839–849"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00508","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospray ionization (ESI) is the most widely used technique for the ionization of liquid samples, for example, from liquid chromatography (LC) coupled to mass spectrometry. Recent experiments demonstrate the penetration of charged droplets or at least large clusters into the high-vacuum region of different ESI mass spectrometers. Using a Bruker micrOTOF equipped with a standard Bruker Apollo ESI source, we demonstrated that time-of-flight (TOF) MS can detect signatures of these droplets by analyzing the statistics of individual TOF spectra, resulting from a single orthogonal acceleration (oa) stage pulse. A custom experimental setup allows additional online monitoring of the ion current in the oa-stage by coupling an oscilloscope to an auxiliary secondary electron multiplier (SEM). The results obtained with ESI are compared to mass spectra recorded under similar conditions using atmospheric pressure chemical ionization (APCI). Our findings reveal that the observation of droplet signatures is unique to the ESI process, with their frequency and intensity strongly determined by the ion source settings. We also report that the majority of the individual spectra obtained do not contain ion signals. The observed intensity in the summed spectra stems from a few very intense spectra, which result from single droplet fragment bursts. In contrast, APCI provides an almost continuous and stable ion current, without intense signal bursts characteristic for ESI. Additional optical monitoring strongly suggests that these signatures are not a result of spray instability, but are common even for undisturbed, continuous spray operation. The variation of ion source parameters shows that specific capillary voltages, nebulizer pressures, and dry gas flows lead to an increase in the frequency of droplet occurrence. Since these parameters are fundamental and frequently altered in analytical measurements, the results reported in this contribution underscore the significance of understanding droplet dynamics in ESI-MS and provide insights regarding droplets affecting the ESI signal intensity recorded in analytical runs.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives