Dušan Veličković*, Marija Veličković, Christopher L. O’Connor, Markus Bitzer and Christopher Anderton,
{"title":"The Impact of the Mass Analyzer and Tissue Section Thickness on Spatial N-Glycomics with MALDI-MSI","authors":"Dušan Veličković*, Marija Veličković, Christopher L. O’Connor, Markus Bitzer and Christopher Anderton, ","doi":"10.1021/jasms.4c0049410.1021/jasms.4c00494","DOIUrl":null,"url":null,"abstract":"<p >We compared matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) spatial <i>N</i>-glycomics data sets from Fourier-transform ion cyclotron resonance (FTICR) and orthogonal accelerated time-of-flight (timsTOF) mass spectrometers of FFPE preserved human kidney samples. We also tested different tissue section thicknesses. In these analyses, we assessed the impact of the mass analyzer and tissue section thickness on <i>N</i>-glycan coverage, sensitivity, and histological alignment. Our results indicate negligible differences in <i>N</i>-glycan coverage between the two mass analyzers, where <i>N</i>-glycan annotation numbers remained consistent and were highly reproducible. The timsTOF-MS analyses demonstrated significant advantages with higher duty cycles and better lateral resolution, allowing for finer spatial resolution without compromising signal integrity. Specifically, timsTOF was able to generate detailed MALDI-MS images at 20 μm step size, accurately identifying <i>N</i>-glycan Hex:5 HexNAc:5 dHex:1 as a tubular-specific marker without observable delocalization. Despite minor annotation discrepancies, where only three species detected by FTICR were not detected by using timsTOF, and a few false-positive annotations from the timsTOF analysis attributed to lower mass resolving power, the overall consistency between the instruments was high. Importantly, tissue section thickness did not affect analysis sensitivity in the timsTOF analyses, with the average glycan signal intensity remaining stable between 7 and 2 μm sections. These findings demonstrate that 2 μm thick tissue slices can be effectively used in spatial <i>N</i>-glycomics workflows, maintaining sensitivity while enhancing confidence in pathohistological evaluations.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 4","pages":"823–828 823–828"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00494","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We compared matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) spatial N-glycomics data sets from Fourier-transform ion cyclotron resonance (FTICR) and orthogonal accelerated time-of-flight (timsTOF) mass spectrometers of FFPE preserved human kidney samples. We also tested different tissue section thicknesses. In these analyses, we assessed the impact of the mass analyzer and tissue section thickness on N-glycan coverage, sensitivity, and histological alignment. Our results indicate negligible differences in N-glycan coverage between the two mass analyzers, where N-glycan annotation numbers remained consistent and were highly reproducible. The timsTOF-MS analyses demonstrated significant advantages with higher duty cycles and better lateral resolution, allowing for finer spatial resolution without compromising signal integrity. Specifically, timsTOF was able to generate detailed MALDI-MS images at 20 μm step size, accurately identifying N-glycan Hex:5 HexNAc:5 dHex:1 as a tubular-specific marker without observable delocalization. Despite minor annotation discrepancies, where only three species detected by FTICR were not detected by using timsTOF, and a few false-positive annotations from the timsTOF analysis attributed to lower mass resolving power, the overall consistency between the instruments was high. Importantly, tissue section thickness did not affect analysis sensitivity in the timsTOF analyses, with the average glycan signal intensity remaining stable between 7 and 2 μm sections. These findings demonstrate that 2 μm thick tissue slices can be effectively used in spatial N-glycomics workflows, maintaining sensitivity while enhancing confidence in pathohistological evaluations.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives