Pre-carbonization-mediated construction of urchin-like NiFe2O4 superparticles with enhanced CNT growth for efficient oxygen evolution

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Junjie Qiu , Xiangyun Xi , Shuoran Zheng , Tongtao Li , Yajun Wang , Xiaomeng Ren , Angang Dong
{"title":"Pre-carbonization-mediated construction of urchin-like NiFe2O4 superparticles with enhanced CNT growth for efficient oxygen evolution","authors":"Junjie Qiu ,&nbsp;Xiangyun Xi ,&nbsp;Shuoran Zheng ,&nbsp;Tongtao Li ,&nbsp;Yajun Wang ,&nbsp;Xiaomeng Ren ,&nbsp;Angang Dong","doi":"10.1016/j.jcis.2025.137463","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we report the rational design and synthesis of carbonized NiFe<sub>2</sub>O<sub>4</sub> superparticles (CarSPs) hierarchically integrated with densely aligned carbon nanotube (CNT) architectures, hereafter denoted as CarSP-CNTs, which exhibit a biomimetic urchin-like morphology. Through exploitation of the colloidal self-assembly and catalytic functionalities inherent to NiFe<sub>2</sub>O<sub>4</sub> nanoparticles (NPs), we achieve seamless integration of one-dimensional CNT arrays with three-dimensional superstructural frameworks. Systematic investigation reveals that the pre-carbonization of surface-bound organic ligands coupled with subsequent CNT growth induces synergistic interplay between conductive carbon matrices and active spinel oxide phases. This structural optimization confers CarSP-CNTs with enhanced charge transfer kinetics and catalytically robust interfaces, as evidenced by their superior electrocatalytic performance for the oxygen evolution reaction (OER) in alkaline electrolyte (1 M KOH). The optimized CarSP-CNTs exhibit a minimal overpotential of 307 mV to deliver a current density of 10 mA cm<sup>−2</sup>, alongside remarkable operational stability exceeding 20 h of continuous electrolysis. These findings establish a paradigm for the rational design of hierarchically structured, multi-component electrocatalysts through coordinated nanoscale engineering, offering a versatile platform for advancing energy conversion technologies.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137463"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008549","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we report the rational design and synthesis of carbonized NiFe2O4 superparticles (CarSPs) hierarchically integrated with densely aligned carbon nanotube (CNT) architectures, hereafter denoted as CarSP-CNTs, which exhibit a biomimetic urchin-like morphology. Through exploitation of the colloidal self-assembly and catalytic functionalities inherent to NiFe2O4 nanoparticles (NPs), we achieve seamless integration of one-dimensional CNT arrays with three-dimensional superstructural frameworks. Systematic investigation reveals that the pre-carbonization of surface-bound organic ligands coupled with subsequent CNT growth induces synergistic interplay between conductive carbon matrices and active spinel oxide phases. This structural optimization confers CarSP-CNTs with enhanced charge transfer kinetics and catalytically robust interfaces, as evidenced by their superior electrocatalytic performance for the oxygen evolution reaction (OER) in alkaline electrolyte (1 M KOH). The optimized CarSP-CNTs exhibit a minimal overpotential of 307 mV to deliver a current density of 10 mA cm−2, alongside remarkable operational stability exceeding 20 h of continuous electrolysis. These findings establish a paradigm for the rational design of hierarchically structured, multi-component electrocatalysts through coordinated nanoscale engineering, offering a versatile platform for advancing energy conversion technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信