Mechanistic Insights into Molecular Copper Hydride Catalysis: the Kinetic Stability of CuH Monomers toward Aggregation is a Critical Parameter for Catalyst Performance

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
David E. Ryan, Jack T. Fuller, III, Evan A. Patrick, Jeremy D. Erickson, Amy L. Speelman, Timothy G. Carroll, Gregory K. Schenter, Bojana Ginovska, Simone Raugei, R. Morris Bullock, Ba L. Tran
{"title":"Mechanistic Insights into Molecular Copper Hydride Catalysis: the Kinetic Stability of CuH Monomers toward Aggregation is a Critical Parameter for Catalyst Performance","authors":"David E. Ryan, Jack T. Fuller, III, Evan A. Patrick, Jeremy D. Erickson, Amy L. Speelman, Timothy G. Carroll, Gregory K. Schenter, Bojana Ginovska, Simone Raugei, R. Morris Bullock, Ba L. Tran","doi":"10.1021/jacs.4c17955","DOIUrl":null,"url":null,"abstract":"The activity of molecular copper hydride (CuH) complexes toward the selective insertion of unsaturated hydrocarbons under mild conditions has contributed significantly to versatile methodologies for upgrading these feedstocks. However, these catalysts are particularly susceptible to deleterious aggregation, leading to the depletion of active CuH species. Little is known about the mechanisms of CuH aggregation, how it influences overall catalyst performance, and how it can be controlled. We address these challenges with mechanistic studies on a model reaction of unactivated alkene hydroboration catalyzed by (IPr*CPh<sub>3</sub>)CuH (LCuH). We report a comprehensive mechanistic investigation of this system, identifying an aggregation pathway that continuously depletes catalytically active LCuH to form inactive CuH clusters during turnover. Deactivation of LCuH is controlled primarily by the competition between the kinetics of the initial LCuH dimerization step and that of alkene insertion into LCuH. We therefore propose that a comprehensive understanding of CuH catalyst performance must account for the <i>kinetics</i> of the initial LCuH dimerization step, revising a previously explored <i>thermodynamic</i> understanding of CuH aggregation, where the concentration of active species is controlled by equilibria established between CuH clusters and monomers. With a series of (NHC)CuH congeners (NHC = <i>N</i>-heterocyclic carbene), we demonstrate that ostensibly minor structural modifications to the ligand peripheries can drastically affect the LCuH dimerization kinetics, while maintaining reactivity toward on-cycle alkene insertion. We employed a computational approach based on molecular dynamics simulations to provide an in-depth understanding of how specific structural ligand modifications can substantially increase the kinetic stability of monomeric CuH catalysts. Our combined experimental and computational studies suggest strategies for rational ligand design that can be broadly applied to molecular catalyst systems that are susceptible to deactivation via aggregation pathways.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"10 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The activity of molecular copper hydride (CuH) complexes toward the selective insertion of unsaturated hydrocarbons under mild conditions has contributed significantly to versatile methodologies for upgrading these feedstocks. However, these catalysts are particularly susceptible to deleterious aggregation, leading to the depletion of active CuH species. Little is known about the mechanisms of CuH aggregation, how it influences overall catalyst performance, and how it can be controlled. We address these challenges with mechanistic studies on a model reaction of unactivated alkene hydroboration catalyzed by (IPr*CPh3)CuH (LCuH). We report a comprehensive mechanistic investigation of this system, identifying an aggregation pathway that continuously depletes catalytically active LCuH to form inactive CuH clusters during turnover. Deactivation of LCuH is controlled primarily by the competition between the kinetics of the initial LCuH dimerization step and that of alkene insertion into LCuH. We therefore propose that a comprehensive understanding of CuH catalyst performance must account for the kinetics of the initial LCuH dimerization step, revising a previously explored thermodynamic understanding of CuH aggregation, where the concentration of active species is controlled by equilibria established between CuH clusters and monomers. With a series of (NHC)CuH congeners (NHC = N-heterocyclic carbene), we demonstrate that ostensibly minor structural modifications to the ligand peripheries can drastically affect the LCuH dimerization kinetics, while maintaining reactivity toward on-cycle alkene insertion. We employed a computational approach based on molecular dynamics simulations to provide an in-depth understanding of how specific structural ligand modifications can substantially increase the kinetic stability of monomeric CuH catalysts. Our combined experimental and computational studies suggest strategies for rational ligand design that can be broadly applied to molecular catalyst systems that are susceptible to deactivation via aggregation pathways.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信