A probabilistic model to estimate number densities from column densities in molecular clouds

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Brandt A. L. Gaches, Michael Y. Grudić
{"title":"A probabilistic model to estimate number densities from column densities in molecular clouds","authors":"Brandt A. L. Gaches, Michael Y. Grudić","doi":"10.1051/0004-6361/202451753","DOIUrl":null,"url":null,"abstract":"Constraining the physical and chemical evolution of molecular clouds is essential to our understanding of star formation. These investigations often necessitate knowledge of some local representative number density of the gas along the line of sight. However, constraining the number density is a difficult endeavor. Robust constraints on the number density often require line observations of specific molecules along with radiation transfer modeling, which provides densities traced by that specific molecule. Column density maps of molecular clouds are more readily available, with many high-fidelity maps calculated from dust emission and extinction, in particular from surveys conduction with the Herschel Space Observatory. We introduce a new probabilistic model which is based on the assumption that the total hydrogen nuclei column density along a line of sight can be decomposed into a turbulent component and a gravitationally dominated component. Therefore, for each pixel in a column density map, the line of sight was decomposed into characteristic diffuse (dubbed “turbulent”) and dense (dubbed “gravitational”) gas number densities from column density maps. The method thus exploits a physical model of turbulence to decouple the random turbulent column from gas in dense bound structures empirically using the observed column density maps. We find the model produces reasonable turbulent and gravitational densities in the Taurus L1495/B213 and Polaris Flare clouds. The model can also be used to infer an effective attenuating column density into the cloud, which is useful for astrochemical models of the clouds. We conclude by demonstrating an application of this method by predicting the emission of the [C II] 1900 GHz, [C I] 492 GHz, and CO (J = 1–0) 115 GHz lines across the Taurus L1495/B213 region at the native resolution of the column density map utilizing a grid of photodissociation-region models.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"72 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202451753","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Constraining the physical and chemical evolution of molecular clouds is essential to our understanding of star formation. These investigations often necessitate knowledge of some local representative number density of the gas along the line of sight. However, constraining the number density is a difficult endeavor. Robust constraints on the number density often require line observations of specific molecules along with radiation transfer modeling, which provides densities traced by that specific molecule. Column density maps of molecular clouds are more readily available, with many high-fidelity maps calculated from dust emission and extinction, in particular from surveys conduction with the Herschel Space Observatory. We introduce a new probabilistic model which is based on the assumption that the total hydrogen nuclei column density along a line of sight can be decomposed into a turbulent component and a gravitationally dominated component. Therefore, for each pixel in a column density map, the line of sight was decomposed into characteristic diffuse (dubbed “turbulent”) and dense (dubbed “gravitational”) gas number densities from column density maps. The method thus exploits a physical model of turbulence to decouple the random turbulent column from gas in dense bound structures empirically using the observed column density maps. We find the model produces reasonable turbulent and gravitational densities in the Taurus L1495/B213 and Polaris Flare clouds. The model can also be used to infer an effective attenuating column density into the cloud, which is useful for astrochemical models of the clouds. We conclude by demonstrating an application of this method by predicting the emission of the [C II] 1900 GHz, [C I] 492 GHz, and CO (J = 1–0) 115 GHz lines across the Taurus L1495/B213 region at the native resolution of the column density map utilizing a grid of photodissociation-region models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信