Menghan Song, Zhaoyi Zeng, Ting-Tung Wang, Yi-Zhuang You, Zi Yang Meng, Pengfei Zhang
{"title":"Monte Carlo Simulation of Operator Dynamics and Entanglement in Dual-Unitary Circuits","authors":"Menghan Song, Zhaoyi Zeng, Ting-Tung Wang, Yi-Zhuang You, Zi Yang Meng, Pengfei Zhang","doi":"10.22331/q-2025-04-01-1681","DOIUrl":null,"url":null,"abstract":"We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions, and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit’s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying long-time operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"33 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-01-1681","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate operator dynamics and entanglement growth in dual-unitary circuits, a class of locally scrambled quantum systems that enables efficient simulation beyond the exponential complexity of the Hilbert space. By mapping the operator evolution to a classical Markov process, we perform Monte Carlo simulations to access the time evolution of local operator density and entanglement with polynomial computational cost. Our results reveal that the operator density converges exponentially to a steady-state value, with analytical bounds that match our simulations. Additionally, we observe a volume-law scaling of operator entanglement across different subregions, and identify a critical transition from maximal to sub-maximal entanglement growth, governed by the circuit’s gate parameter. This transition, confirmed by both mean-field theory and Monte Carlo simulations, provides new insights into operator entanglement dynamics in quantum many-body systems. Our work offers a scalable computational framework for studying long-time operator evolution and entanglement, paving the way for deeper exploration of quantum information dynamics.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.