A Fast and Lightweight 3D Keypoint Detector

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chengzhuan Yang, Qian Yu, Hui Wei, Fei Wu, Yunliang Jiang, Zhonglong Zheng, Ming-Hsuan Yang
{"title":"A Fast and Lightweight 3D Keypoint Detector","authors":"Chengzhuan Yang, Qian Yu, Hui Wei, Fei Wu, Yunliang Jiang, Zhonglong Zheng, Ming-Hsuan Yang","doi":"10.1007/s11263-025-02425-3","DOIUrl":null,"url":null,"abstract":"<p>Keypoint detection is crucial in many visual tasks, such as object recognition, shape retrieval, and 3D reconstruction, as labeling point data is labor-intensive or sometimes implausible. Nevertheless, it is challenging to quickly and accurately locate keypoints unsupervised from point clouds. This work proposes a fast and lightweight 3D keypoint detector that can efficiently and accurately detect keypoints from point clouds. Our method does not require a complex model learning process and generalizes well to new scenes. Specifically, we consider detecting keypoints a saliency detection problem for a point cloud. First, we propose a simple and effective distance measure to characterize the saliency of points in a point cloud. This distance describes geometrically essential points in the point cloud. Next, we present a regional saliency based on relative centroid distance representation that can globally characterize keypoints with regional visual information. Third, we combine geometric and semantic cues to generate a saliency map of the point cloud for determining stable 3D keypoints. We evaluate our method against existing approaches on four benchmark keypoint datasets to demonstrate its state-of-the-art performance.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"225 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02425-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Keypoint detection is crucial in many visual tasks, such as object recognition, shape retrieval, and 3D reconstruction, as labeling point data is labor-intensive or sometimes implausible. Nevertheless, it is challenging to quickly and accurately locate keypoints unsupervised from point clouds. This work proposes a fast and lightweight 3D keypoint detector that can efficiently and accurately detect keypoints from point clouds. Our method does not require a complex model learning process and generalizes well to new scenes. Specifically, we consider detecting keypoints a saliency detection problem for a point cloud. First, we propose a simple and effective distance measure to characterize the saliency of points in a point cloud. This distance describes geometrically essential points in the point cloud. Next, we present a regional saliency based on relative centroid distance representation that can globally characterize keypoints with regional visual information. Third, we combine geometric and semantic cues to generate a saliency map of the point cloud for determining stable 3D keypoints. We evaluate our method against existing approaches on four benchmark keypoint datasets to demonstrate its state-of-the-art performance.

一个快速和轻量级的3D关键点检测器
关键点检测在许多视觉任务中是至关重要的,如物体识别、形状检索和3D重建,因为标记点数据是劳动密集型的,有时是不可能的。然而,如何在无监督的情况下从点云中快速准确地定位关键点是一个挑战。本文提出了一种快速、轻量级的3D关键点检测器,可以高效、准确地从点云中检测关键点。我们的方法不需要复杂的模型学习过程,并且可以很好地推广到新的场景。具体来说,我们认为关键点检测是点云的显著性检测问题。首先,我们提出了一种简单有效的距离度量来表征点云中点的显著性。这个距离在几何上描述了点云中的基本点。接下来,我们提出了一种基于相对质心距离表示的区域显著性方法,该方法可以利用区域视觉信息对关键点进行全局表征。第三,我们结合几何和语义线索生成点云的显著性图,以确定稳定的3D关键点。我们在四个基准关键点数据集上对现有方法进行了评估,以展示其最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信