{"title":"A Fast and Lightweight 3D Keypoint Detector","authors":"Chengzhuan Yang, Qian Yu, Hui Wei, Fei Wu, Yunliang Jiang, Zhonglong Zheng, Ming-Hsuan Yang","doi":"10.1007/s11263-025-02425-3","DOIUrl":null,"url":null,"abstract":"<p>Keypoint detection is crucial in many visual tasks, such as object recognition, shape retrieval, and 3D reconstruction, as labeling point data is labor-intensive or sometimes implausible. Nevertheless, it is challenging to quickly and accurately locate keypoints unsupervised from point clouds. This work proposes a fast and lightweight 3D keypoint detector that can efficiently and accurately detect keypoints from point clouds. Our method does not require a complex model learning process and generalizes well to new scenes. Specifically, we consider detecting keypoints a saliency detection problem for a point cloud. First, we propose a simple and effective distance measure to characterize the saliency of points in a point cloud. This distance describes geometrically essential points in the point cloud. Next, we present a regional saliency based on relative centroid distance representation that can globally characterize keypoints with regional visual information. Third, we combine geometric and semantic cues to generate a saliency map of the point cloud for determining stable 3D keypoints. We evaluate our method against existing approaches on four benchmark keypoint datasets to demonstrate its state-of-the-art performance.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"225 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02425-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Keypoint detection is crucial in many visual tasks, such as object recognition, shape retrieval, and 3D reconstruction, as labeling point data is labor-intensive or sometimes implausible. Nevertheless, it is challenging to quickly and accurately locate keypoints unsupervised from point clouds. This work proposes a fast and lightweight 3D keypoint detector that can efficiently and accurately detect keypoints from point clouds. Our method does not require a complex model learning process and generalizes well to new scenes. Specifically, we consider detecting keypoints a saliency detection problem for a point cloud. First, we propose a simple and effective distance measure to characterize the saliency of points in a point cloud. This distance describes geometrically essential points in the point cloud. Next, we present a regional saliency based on relative centroid distance representation that can globally characterize keypoints with regional visual information. Third, we combine geometric and semantic cues to generate a saliency map of the point cloud for determining stable 3D keypoints. We evaluate our method against existing approaches on four benchmark keypoint datasets to demonstrate its state-of-the-art performance.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.