Energy stable semi-implicit schemes for the 2D Allen–Cahn and fractional Cahn–Hilliard equations

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Xinyu Cheng
{"title":"Energy stable semi-implicit schemes for the 2D Allen–Cahn and fractional Cahn–Hilliard equations","authors":"Xinyu Cheng","doi":"10.1093/imanum/draf010","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in a class of numerical schemes for certain phase field models. It is well known that unconditional energy stability (energy decays in time regardless of the size of the time step) provides a fidelity check in practical numerical simulations. In recent work (Li, D. (2022b, Why large time-stepping methods for the Cahn–Hilliard equation is stable. Math. Comp., 91, 2501–2515)), a type of semi-implicit scheme for the Cahn–Hilliard (CH) equation with regular potential was developed satisfying the energy-decay property. In this paper, we extend such semi-implicit schemes to the Allen–Cahn equation and the fractional CH equation with a rigorous proof of similar energy stability. Models in two spatial dimensions are discussed.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"72 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we are interested in a class of numerical schemes for certain phase field models. It is well known that unconditional energy stability (energy decays in time regardless of the size of the time step) provides a fidelity check in practical numerical simulations. In recent work (Li, D. (2022b, Why large time-stepping methods for the Cahn–Hilliard equation is stable. Math. Comp., 91, 2501–2515)), a type of semi-implicit scheme for the Cahn–Hilliard (CH) equation with regular potential was developed satisfying the energy-decay property. In this paper, we extend such semi-implicit schemes to the Allen–Cahn equation and the fractional CH equation with a rigorous proof of similar energy stability. Models in two spatial dimensions are discussed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信