{"title":"Energy stable semi-implicit schemes for the 2D Allen–Cahn and fractional Cahn–Hilliard equations","authors":"Xinyu Cheng","doi":"10.1093/imanum/draf010","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in a class of numerical schemes for certain phase field models. It is well known that unconditional energy stability (energy decays in time regardless of the size of the time step) provides a fidelity check in practical numerical simulations. In recent work (Li, D. (2022b, Why large time-stepping methods for the Cahn–Hilliard equation is stable. Math. Comp., 91, 2501–2515)), a type of semi-implicit scheme for the Cahn–Hilliard (CH) equation with regular potential was developed satisfying the energy-decay property. In this paper, we extend such semi-implicit schemes to the Allen–Cahn equation and the fractional CH equation with a rigorous proof of similar energy stability. Models in two spatial dimensions are discussed.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"72 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we are interested in a class of numerical schemes for certain phase field models. It is well known that unconditional energy stability (energy decays in time regardless of the size of the time step) provides a fidelity check in practical numerical simulations. In recent work (Li, D. (2022b, Why large time-stepping methods for the Cahn–Hilliard equation is stable. Math. Comp., 91, 2501–2515)), a type of semi-implicit scheme for the Cahn–Hilliard (CH) equation with regular potential was developed satisfying the energy-decay property. In this paper, we extend such semi-implicit schemes to the Allen–Cahn equation and the fractional CH equation with a rigorous proof of similar energy stability. Models in two spatial dimensions are discussed.
期刊介绍:
The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.