{"title":"Metagenomic analysis characterizes stage-specific gut microbiota in Alzheimer’s disease","authors":"Longhao Jia, Yize Ke, Shuo Zhao, Jinxin Liu, Xiaohui Luo, Jixin Cao, Yujia Liu, Qihao Guo, Wei‑Hua Chen, Feng Chen, Jiao Wang, Hao Wu, Jing Ding, Xing‑Ming Zhao","doi":"10.1038/s41380-025-02973-7","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a decade-long preclinical pathological period that can be divided into several stages. Emerging evidence has revealed that the microbiota-gut-brain axis plays an important role in AD pathology. However, the role of gut microbiota in different AD stages has not been well characterized. In this study, we performed fecal shotgun metagenomic analysis on a Chinese cohort with 476 participants across five stages of AD pathology to characterize stage-specific alterations in gut microbiota and evaluate their diagnostic potential. We discovered extensive gut dysbiosis that is associated with neuroinflammation and neurotransmitter dysregulation, with over 10% of microbial species and gene families showing significant alterations during AD progression. Furthermore, we demonstrated that microbial gene families exhibited strong diagnostic capabilities, evidenced by an average AUC of 0.80 in cross-validation and 0.75 in independent external validation. In the optimal model, the most discriminant gene families are primarily involved in the metabolism of carbohydrates, amino acids, energy, glycan and vitamins. We found that stage-specific microbial gene families in AD pathology could be validated by an in vitro gut simulator and were associated with specific genera. We also observed that the gut microbiota could affect the progression of cognitive decline in 5xFAD mice through fecal microbiota transplantation, which could be used for early intervention of AD. Our multi-stage large cohort metagenomic analysis demonstrates that alterations in gut microbiota occur from the very early stages of AD pathology, offering important etiological and diagnostic insights.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"8 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-02973-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a decade-long preclinical pathological period that can be divided into several stages. Emerging evidence has revealed that the microbiota-gut-brain axis plays an important role in AD pathology. However, the role of gut microbiota in different AD stages has not been well characterized. In this study, we performed fecal shotgun metagenomic analysis on a Chinese cohort with 476 participants across five stages of AD pathology to characterize stage-specific alterations in gut microbiota and evaluate their diagnostic potential. We discovered extensive gut dysbiosis that is associated with neuroinflammation and neurotransmitter dysregulation, with over 10% of microbial species and gene families showing significant alterations during AD progression. Furthermore, we demonstrated that microbial gene families exhibited strong diagnostic capabilities, evidenced by an average AUC of 0.80 in cross-validation and 0.75 in independent external validation. In the optimal model, the most discriminant gene families are primarily involved in the metabolism of carbohydrates, amino acids, energy, glycan and vitamins. We found that stage-specific microbial gene families in AD pathology could be validated by an in vitro gut simulator and were associated with specific genera. We also observed that the gut microbiota could affect the progression of cognitive decline in 5xFAD mice through fecal microbiota transplantation, which could be used for early intervention of AD. Our multi-stage large cohort metagenomic analysis demonstrates that alterations in gut microbiota occur from the very early stages of AD pathology, offering important etiological and diagnostic insights.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.