Songtao Huang, Yunpeng Ji, Thomas Repplinger, Gabriel G. T. Assumpção, Jianyi Chen, Grant L. Schumacher, Franklin J. Vivanco, Hadrien Kurkjian, Nir Navon
{"title":"Emergence of Sound in a Tunable Fermi Fluid","authors":"Songtao Huang, Yunpeng Ji, Thomas Repplinger, Gabriel G. T. Assumpção, Jianyi Chen, Grant L. Schumacher, Franklin J. Vivanco, Hadrien Kurkjian, Nir Navon","doi":"10.1103/physrevx.15.011074","DOIUrl":null,"url":null,"abstract":"Landau’s Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau’s theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response to a periodic external perturbation. In an ideal Fermi gas, we measure for the first time the celebrated Lindhard function. As the system is brought from the collisionless to the hydrodynamic regime, we observe the emergence of sound and find that the experimental observations are quantitatively understood with a first-principle transport equation for the FL. When the system is more strongly interacting, we find deviations from such predictions. Finally, we measure the momentum-space shape of the quasiparticle excitations and see how it evolves from the collisionless to the collisional regime. Our study establishes this system as a clean platform for studying Landau’s theory of the FL and paves the way for extending the theory to more exotic conditions, such as nonlinear dynamics and FLs with strong correlations in versatile settings. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"33 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011074","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Landau’s Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau’s theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response to a periodic external perturbation. In an ideal Fermi gas, we measure for the first time the celebrated Lindhard function. As the system is brought from the collisionless to the hydrodynamic regime, we observe the emergence of sound and find that the experimental observations are quantitatively understood with a first-principle transport equation for the FL. When the system is more strongly interacting, we find deviations from such predictions. Finally, we measure the momentum-space shape of the quasiparticle excitations and see how it evolves from the collisionless to the collisional regime. Our study establishes this system as a clean platform for studying Landau’s theory of the FL and paves the way for extending the theory to more exotic conditions, such as nonlinear dynamics and FLs with strong correlations in versatile settings. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.