The multi-armed bandit problem under the mean-variance setting

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Hongda Hu , Arthur Charpentier , Mario Ghossoub , Alexander Schied
{"title":"The multi-armed bandit problem under the mean-variance setting","authors":"Hongda Hu ,&nbsp;Arthur Charpentier ,&nbsp;Mario Ghossoub ,&nbsp;Alexander Schied","doi":"10.1016/j.ejor.2025.03.011","DOIUrl":null,"url":null,"abstract":"<div><div>The classical multi-armed bandit problem involves a learner and a collection of arms with unknown reward distributions. At each round, the learner selects an arm and receives new information. The learner faces a tradeoff between exploiting the current information and exploring all arms. The objective is to maximize the expected cumulative reward over all rounds. Such an objective does not involve a risk-reward tradeoff, which is fundamental in many areas of application. In this paper, we build upon Sani et al. (2012)’s extension of the classical problem to a mean–variance setting. We relax their assumptions of independent arms and bounded rewards, and we consider sub-Gaussian arms. We introduce the Risk-Aware Lower Confidence Bound algorithm to solve the problem, and study some of its properties. We perform numerical simulations to demonstrate that, in both independent and dependent scenarios, our approach outperforms the algorithm suggested by Sani et al. (2012).</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"324 1","pages":"Pages 168-182"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221725002085","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The classical multi-armed bandit problem involves a learner and a collection of arms with unknown reward distributions. At each round, the learner selects an arm and receives new information. The learner faces a tradeoff between exploiting the current information and exploring all arms. The objective is to maximize the expected cumulative reward over all rounds. Such an objective does not involve a risk-reward tradeoff, which is fundamental in many areas of application. In this paper, we build upon Sani et al. (2012)’s extension of the classical problem to a mean–variance setting. We relax their assumptions of independent arms and bounded rewards, and we consider sub-Gaussian arms. We introduce the Risk-Aware Lower Confidence Bound algorithm to solve the problem, and study some of its properties. We perform numerical simulations to demonstrate that, in both independent and dependent scenarios, our approach outperforms the algorithm suggested by Sani et al. (2012).
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信