{"title":"Large-Eddy Simulations of kerosene spray combustion in a supersonic jet flow","authors":"Florian Kissel, Guillaume Ribert, Pascale Domingo","doi":"10.1016/j.ast.2025.110164","DOIUrl":null,"url":null,"abstract":"<div><div>High-speed reactive two-phase flows, relevant for the development of future scramjet engines, are studied by Large-Eddy Simulations. The present configuration is inspired by the supersonic Cheng's burner replacing hydrogen with kerosene in the gaseous or liquid phase. The sonic kerosene injection is surrounded by a supersonic co-flow of hot vitiated air, ensuring a jet flame's stabilization. The global equivalence of the burner is set to 0.5. A 5-species global mechanism and a more detailed mechanism from the literature involving 19 species and 54 reactions are compared with a new optimized chemistry involving 18 species and 29 reactions. The impact of ignition delay and droplet size on flame stabilization dynamics and combustion modes is discussed. The necessity of a sub-grid closure for the source terms is assessed. Whatever the kerosene phase, the flame structure is dominated by the non-premixed combustion regime, even if a non-negligible contribution of the rich premixed regime is detected.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"161 ","pages":"Article 110164"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825002354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
High-speed reactive two-phase flows, relevant for the development of future scramjet engines, are studied by Large-Eddy Simulations. The present configuration is inspired by the supersonic Cheng's burner replacing hydrogen with kerosene in the gaseous or liquid phase. The sonic kerosene injection is surrounded by a supersonic co-flow of hot vitiated air, ensuring a jet flame's stabilization. The global equivalence of the burner is set to 0.5. A 5-species global mechanism and a more detailed mechanism from the literature involving 19 species and 54 reactions are compared with a new optimized chemistry involving 18 species and 29 reactions. The impact of ignition delay and droplet size on flame stabilization dynamics and combustion modes is discussed. The necessity of a sub-grid closure for the source terms is assessed. Whatever the kerosene phase, the flame structure is dominated by the non-premixed combustion regime, even if a non-negligible contribution of the rich premixed regime is detected.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.