3D segmentation combining spatial and multi-scale features for intracranial aneurysm.

Medical physics Pub Date : 2025-03-28 DOI:10.1002/mp.17783
Xinfeng Zhang, Jie Shao, Xiangsheng Li, Xiaomin Liu, Hui Li, Maoshen Jia
{"title":"3D segmentation combining spatial and multi-scale features for intracranial aneurysm.","authors":"Xinfeng Zhang, Jie Shao, Xiangsheng Li, Xiaomin Liu, Hui Li, Maoshen Jia","doi":"10.1002/mp.17783","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditionally, the diagnosis of intracranial aneurysms has relied on the experience of the doctor in assessing the scanning results of radiological imaging technology, which is subjective and inefficient, and it is also limited by the physical strength and energy of the doctor.</p><p><strong>Purpose: </strong>In order to improve the diagnostic efficiency of doctors and reduce the rate of misdiagnosis and missed diagnosis as much as possible.</p><p><strong>Methods: </strong>We propose a 3D segmentation network, SMNet, based on the U-Net architecture that combines spatial and multi-scale features. The network can better solve the problem of intracranial aneurysm segmentation on magnetic resonance angiography (MRA) scanning sequences. Specifically, semantic information of different dimensions is extracted at each stage of the encoder by the multi-scale feature extraction block (MSE Block) and the strip volumetric pooling block (SVP Block), respectively. Then, after the fusion of adjacent scale features extracted by the decoder, the weight of features is further redistributed by the quaternary spatial attention block (QSA Block). While focusing on the important features, the ability to discriminate different foregrounds is improved.</p><p><strong>Results: </strong>Experiments show that the proposed three modules improve the segmentation performance to different degrees. Dice and MIoU have increased by 16.7% and 28% compared to the baseline in the private dataset, and the results of the Aneurysm Detection And segMentation (ADAM) public dataset are 0.482 and 0.389, respectively. It has shown better segmentation quality than 3D medical image segmentation mainstream models.</p><p><strong>Conclusion: </strong>Our model greatly improves the segmentation results of intracranial aneurysms with MRA images, and makes a certain contribution to the clinical intervention of computer-assisted diagnosis and treatment in this field.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traditionally, the diagnosis of intracranial aneurysms has relied on the experience of the doctor in assessing the scanning results of radiological imaging technology, which is subjective and inefficient, and it is also limited by the physical strength and energy of the doctor.

Purpose: In order to improve the diagnostic efficiency of doctors and reduce the rate of misdiagnosis and missed diagnosis as much as possible.

Methods: We propose a 3D segmentation network, SMNet, based on the U-Net architecture that combines spatial and multi-scale features. The network can better solve the problem of intracranial aneurysm segmentation on magnetic resonance angiography (MRA) scanning sequences. Specifically, semantic information of different dimensions is extracted at each stage of the encoder by the multi-scale feature extraction block (MSE Block) and the strip volumetric pooling block (SVP Block), respectively. Then, after the fusion of adjacent scale features extracted by the decoder, the weight of features is further redistributed by the quaternary spatial attention block (QSA Block). While focusing on the important features, the ability to discriminate different foregrounds is improved.

Results: Experiments show that the proposed three modules improve the segmentation performance to different degrees. Dice and MIoU have increased by 16.7% and 28% compared to the baseline in the private dataset, and the results of the Aneurysm Detection And segMentation (ADAM) public dataset are 0.482 and 0.389, respectively. It has shown better segmentation quality than 3D medical image segmentation mainstream models.

Conclusion: Our model greatly improves the segmentation results of intracranial aneurysms with MRA images, and makes a certain contribution to the clinical intervention of computer-assisted diagnosis and treatment in this field.

结合空间和多尺度特征的颅内动脉瘤三维分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信