Varun Dewaker, Vivek Kumar Morya, Yoo Hee Kim, Sung Taek Park, Hyeong Su Kim, Young Ho Koh
{"title":"Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools.","authors":"Varun Dewaker, Vivek Kumar Morya, Yoo Hee Kim, Sung Taek Park, Hyeong Su Kim, Young Ho Koh","doi":"10.1186/s40364-025-00764-4","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies play a crucial role in defending the human body against diseases, including life-threatening conditions like cancer. They mediate immune responses against foreign antigens and, in some cases, self-antigens. Over time, antibody-based technologies have evolved from monoclonal antibodies (mAbs) to chimeric antigen receptor T cells (CAR-T cells), significantly impacting biotechnology, diagnostics, and therapeutics. Although these advancements have enhanced therapeutic interventions, the integration of artificial intelligence (AI) is revolutionizing antibody design and optimization. This review explores recent AI advancements, including large language models (LLMs), diffusion models, and generative AI-based applications, which have transformed antibody discovery by accelerating de novo generation, enhancing immune response precision, and optimizing therapeutic efficacy. Through advanced data analysis, AI enables the prediction and design of antibody sequences, 3D structures, complementarity-determining regions (CDRs), paratopes, epitopes, and antigen-antibody interactions. These AI-powered innovations address longstanding challenges in antibody development, significantly improving speed, specificity, and accuracy in therapeutic design. By integrating computational advancements with biomedical applications, AI is driving next-generation cancer therapies, transforming precision medicine, and enhancing patient outcomes.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"52"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00764-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies play a crucial role in defending the human body against diseases, including life-threatening conditions like cancer. They mediate immune responses against foreign antigens and, in some cases, self-antigens. Over time, antibody-based technologies have evolved from monoclonal antibodies (mAbs) to chimeric antigen receptor T cells (CAR-T cells), significantly impacting biotechnology, diagnostics, and therapeutics. Although these advancements have enhanced therapeutic interventions, the integration of artificial intelligence (AI) is revolutionizing antibody design and optimization. This review explores recent AI advancements, including large language models (LLMs), diffusion models, and generative AI-based applications, which have transformed antibody discovery by accelerating de novo generation, enhancing immune response precision, and optimizing therapeutic efficacy. Through advanced data analysis, AI enables the prediction and design of antibody sequences, 3D structures, complementarity-determining regions (CDRs), paratopes, epitopes, and antigen-antibody interactions. These AI-powered innovations address longstanding challenges in antibody development, significantly improving speed, specificity, and accuracy in therapeutic design. By integrating computational advancements with biomedical applications, AI is driving next-generation cancer therapies, transforming precision medicine, and enhancing patient outcomes.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.