Exploring the Incremental Value of Aorta Enhancement Normalization Method in Evaluating Renal Cell Carcinoma Histological Subtypes: A Multi-center Large Cohort Study.
IF 3.8 2区 医学Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Zexin Huang, Lei Wang, Hangru Mei, Jiewen Liu, Haoyang Zeng, Weihao Liu, Haoyuan Yuan, Kai Wu, Hanlin Liu
{"title":"Exploring the Incremental Value of Aorta Enhancement Normalization Method in Evaluating Renal Cell Carcinoma Histological Subtypes: A Multi-center Large Cohort Study.","authors":"Zexin Huang, Lei Wang, Hangru Mei, Jiewen Liu, Haoyang Zeng, Weihao Liu, Haoyuan Yuan, Kai Wu, Hanlin Liu","doi":"10.1016/j.acra.2025.03.007","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>The classification of renal cell carcinoma (RCC) histological subtypes plays a crucial role in clinical diagnosis. However, traditional image normalization methods often struggle with discrepancies arising from differences in imaging parameters, scanning devices, and multi-center data, which can impact model robustness and generalizability.</p><p><strong>Materials and methods: </strong>This study included 1628 patients with pathologically confirmed RCC who underwent nephrectomy across eight cohorts. These were divided into a training set, a validation set, external test dataset 1, and external test dataset 2. We proposed an \"Aortic Enhancement Normalization\" (AEN) method based on the lesion-to-aorta enhancement ratio and developed an automated lesion segmentation model along with a multi-scale CT feature extractor. Several machine learning algorithms, including Random Forest, LightGBM, CatBoost, and XGBoost, were used to build classification models and compare the performance of the AEN and traditional approaches for evaluating histological subtypes (clear cell renal cell carcinoma [ccRCC] vs. non-ccRCC). Additionally, we employed SHAP analysis to further enhance the transparency and interpretability of the model's decisions.</p><p><strong>Results: </strong>The experimental results demonstrated that the AEN method outperformed the traditional normalization method across all four algorithms. Specifically, in the XGBoost model, the AEN method significantly improved performance in both internal and external validation sets, achieving AUROC values of 0.89, 0.81, and 0.80, highlighting its superior performance and strong generalizability. SHAP analysis revealed that multi-scale CT features played a critical role in the model's decision-making process.</p><p><strong>Conclusion: </strong>The proposed AEN method effectively reduces the impact of imaging parameter differences, significantly improving the robustness and generalizability of histological subtype (ccRCC vs. non-ccRCC) models. This approach provides new insights for multi-center data analysis and demonstrates promising clinical applicability.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.03.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: The classification of renal cell carcinoma (RCC) histological subtypes plays a crucial role in clinical diagnosis. However, traditional image normalization methods often struggle with discrepancies arising from differences in imaging parameters, scanning devices, and multi-center data, which can impact model robustness and generalizability.
Materials and methods: This study included 1628 patients with pathologically confirmed RCC who underwent nephrectomy across eight cohorts. These were divided into a training set, a validation set, external test dataset 1, and external test dataset 2. We proposed an "Aortic Enhancement Normalization" (AEN) method based on the lesion-to-aorta enhancement ratio and developed an automated lesion segmentation model along with a multi-scale CT feature extractor. Several machine learning algorithms, including Random Forest, LightGBM, CatBoost, and XGBoost, were used to build classification models and compare the performance of the AEN and traditional approaches for evaluating histological subtypes (clear cell renal cell carcinoma [ccRCC] vs. non-ccRCC). Additionally, we employed SHAP analysis to further enhance the transparency and interpretability of the model's decisions.
Results: The experimental results demonstrated that the AEN method outperformed the traditional normalization method across all four algorithms. Specifically, in the XGBoost model, the AEN method significantly improved performance in both internal and external validation sets, achieving AUROC values of 0.89, 0.81, and 0.80, highlighting its superior performance and strong generalizability. SHAP analysis revealed that multi-scale CT features played a critical role in the model's decision-making process.
Conclusion: The proposed AEN method effectively reduces the impact of imaging parameter differences, significantly improving the robustness and generalizability of histological subtype (ccRCC vs. non-ccRCC) models. This approach provides new insights for multi-center data analysis and demonstrates promising clinical applicability.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.