Can Treatment with Human Mesenchymal Stem Cells Rescue the Degenerative Disc Phenotype? An in Vitro Pilot Study of Induced Cytokine Expression.

IF 4.9 1区 医学 Q1 CLINICAL NEUROLOGY
Jonathan Dalton, Rajkishen Narayanan, Robert J Oris, Teeto Ezeonu, Evan Bradley, Jose A Canseco, Alexander R Vaccaro, John D Koerner, Dessislava Markova, Christopher Kepler
{"title":"Can Treatment with Human Mesenchymal Stem Cells Rescue the Degenerative Disc Phenotype? An in Vitro Pilot Study of Induced Cytokine Expression.","authors":"Jonathan Dalton, Rajkishen Narayanan, Robert J Oris, Teeto Ezeonu, Evan Bradley, Jose A Canseco, Alexander R Vaccaro, John D Koerner, Dessislava Markova, Christopher Kepler","doi":"10.1016/j.spinee.2025.03.026","DOIUrl":null,"url":null,"abstract":"<p><strong>Background context: </strong>Given the relatively low cell density in degenerative discs, strategies intended to bolster disc cellularity through stem cell injections have come into clinical use. Stem cell therapy is meant to provide a source of viable disc cells that can promote a healthy disc phenotype. Nevertheless, there is a limited understanding of the mechanisms through which stem cell therapy impacts degeneration.</p><p><strong>Purpose: </strong>The objectives of this pilot study were: 1) to evaluate gene expression changes associated with an in vitro induced degenerative phenotype in human nucleus pulposus (NP) cells, 2) to co-culture these degenerative NP cells with human mesenchymal stem cells (hMSCs) and investigate the impact this has on gene expression, 3) to investigate possible mechanisms by which hMSCs may impact the degenerative phenotype.</p><p><strong>Study design: </strong>Laboratory study.</p><p><strong>Methods: </strong>NP cells were isolated and cultured from patients undergoing anterior lumbar interbody fusion for degenerative disc disease. A degenerative phenotype was induced in cultured NP cells by treatment with an inflammatory protocol (10pg/ml IL-1β and 100pg/ml TNF-α) for 7 days. Gene expression of Treated NP cells was compared to Untreated NP cells via reverse transcriptase polymerase chain reaction. NP cells were then co-cultured with hMSCs in vitro and treated with the inflammatory protocol. Gene expression of Treated NP cells co-cultured with hMSCs was compared to Treated NP cells alone. Preliminary co-culture data demonstrated that IL-10 was uniquely and dramatically upregulated. Therefore, gene expression of Treated NP cells exposed to IL-10 for 24 hours was compared to Treated NP cells alone.</p><p><strong>Results: </strong>Treated NP cells compared to Control NP cells showed upregulation of numerous pro-inflammatory cytokines, including CXCL5, IL-8, and IL-6 and downregulation of several anti-inflammatory cytokines, including IL-10. After co-culture of Treated NP cells with hMSCs, a significant increase in gene expression was identified in IL-10 (+15.34 fold), BMP-6 (+2.32 fold), and LIF (+2.14 fold). A significant decrease in gene expression (p < 0.05) was seen in CCL7 (-2.03) and CXCL12 (-1.67). Exposure of Treated NP cells to IL-10 resulted in upregulation of COL-2 (+1.55 fold, p=0.013) and downregulation of IL-8 (-1.4 fold), CXCL-5 (-1.58 fold,), and MMP-3 (-2.02 fold).</p><p><strong>Conclusion: </strong>This in vitro pilot study shows that co-culture of degenerative phenotype NP cells with hMSCs produces multiple gene regulatory changes associated with an anti-inflammatory phenotype. Additionally, exposure of degenerative phenotype NP cells to IL-10 produces gene regulation associated with both anti-inflammatory and pro-extracellular matrix effects.</p><p><strong>Clinical significance: </strong>These findings provide mechanistic support for the use of stem cell therapy as a strategy to decrease the pro-inflammatory molecular environment associated with disc degeneration. Additionally, given the challenges with the viability of hMSCs in the disc microenvironment, IL-10 may be another potential candidate for future targeted therapies for disc degeneration.</p>","PeriodicalId":49484,"journal":{"name":"Spine Journal","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.spinee.2025.03.026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background context: Given the relatively low cell density in degenerative discs, strategies intended to bolster disc cellularity through stem cell injections have come into clinical use. Stem cell therapy is meant to provide a source of viable disc cells that can promote a healthy disc phenotype. Nevertheless, there is a limited understanding of the mechanisms through which stem cell therapy impacts degeneration.

Purpose: The objectives of this pilot study were: 1) to evaluate gene expression changes associated with an in vitro induced degenerative phenotype in human nucleus pulposus (NP) cells, 2) to co-culture these degenerative NP cells with human mesenchymal stem cells (hMSCs) and investigate the impact this has on gene expression, 3) to investigate possible mechanisms by which hMSCs may impact the degenerative phenotype.

Study design: Laboratory study.

Methods: NP cells were isolated and cultured from patients undergoing anterior lumbar interbody fusion for degenerative disc disease. A degenerative phenotype was induced in cultured NP cells by treatment with an inflammatory protocol (10pg/ml IL-1β and 100pg/ml TNF-α) for 7 days. Gene expression of Treated NP cells was compared to Untreated NP cells via reverse transcriptase polymerase chain reaction. NP cells were then co-cultured with hMSCs in vitro and treated with the inflammatory protocol. Gene expression of Treated NP cells co-cultured with hMSCs was compared to Treated NP cells alone. Preliminary co-culture data demonstrated that IL-10 was uniquely and dramatically upregulated. Therefore, gene expression of Treated NP cells exposed to IL-10 for 24 hours was compared to Treated NP cells alone.

Results: Treated NP cells compared to Control NP cells showed upregulation of numerous pro-inflammatory cytokines, including CXCL5, IL-8, and IL-6 and downregulation of several anti-inflammatory cytokines, including IL-10. After co-culture of Treated NP cells with hMSCs, a significant increase in gene expression was identified in IL-10 (+15.34 fold), BMP-6 (+2.32 fold), and LIF (+2.14 fold). A significant decrease in gene expression (p < 0.05) was seen in CCL7 (-2.03) and CXCL12 (-1.67). Exposure of Treated NP cells to IL-10 resulted in upregulation of COL-2 (+1.55 fold, p=0.013) and downregulation of IL-8 (-1.4 fold), CXCL-5 (-1.58 fold,), and MMP-3 (-2.02 fold).

Conclusion: This in vitro pilot study shows that co-culture of degenerative phenotype NP cells with hMSCs produces multiple gene regulatory changes associated with an anti-inflammatory phenotype. Additionally, exposure of degenerative phenotype NP cells to IL-10 produces gene regulation associated with both anti-inflammatory and pro-extracellular matrix effects.

Clinical significance: These findings provide mechanistic support for the use of stem cell therapy as a strategy to decrease the pro-inflammatory molecular environment associated with disc degeneration. Additionally, given the challenges with the viability of hMSCs in the disc microenvironment, IL-10 may be another potential candidate for future targeted therapies for disc degeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Spine Journal
Spine Journal 医学-临床神经学
CiteScore
8.20
自引率
6.70%
发文量
680
审稿时长
13.1 weeks
期刊介绍: The Spine Journal, the official journal of the North American Spine Society, is an international and multidisciplinary journal that publishes original, peer-reviewed articles on research and treatment related to the spine and spine care, including basic science and clinical investigations. It is a condition of publication that manuscripts submitted to The Spine Journal have not been published, and will not be simultaneously submitted or published elsewhere. The Spine Journal also publishes major reviews of specific topics by acknowledged authorities, technical notes, teaching editorials, and other special features, Letters to the Editor-in-Chief are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信