FLT3 inhibition upregulates OCT4/NANOG to promote maintenance and TKI resistance of FLT3-ITD+ acute myeloid leukemia.

IF 5.9 2区 医学 Q1 ONCOLOGY
Qi Zhou, Zijian Li, Pingping Zhao, Yongyu Guan, Huiyuan Chu, Yaming Xi
{"title":"FLT3 inhibition upregulates OCT4/NANOG to promote maintenance and TKI resistance of FLT3-ITD<sup>+</sup> acute myeloid leukemia.","authors":"Qi Zhou, Zijian Li, Pingping Zhao, Yongyu Guan, Huiyuan Chu, Yaming Xi","doi":"10.1038/s41389-025-00553-6","DOIUrl":null,"url":null,"abstract":"<p><p>Up to 30% of acute myeloid leukemia (AML) patients face unfavorable outcomes due to the FMS-like receptor tyrosine kinase-3 (FLT3) internal tandem duplication (ITD) mutation. Although FLT3 inhibitors show encouraging outcomes in treatment, they fail to eliminate leukemia stem cells, the origin of persistent and resistant lesions. Exploration of the mechanism in FLT3-ITD<sup>+</sup> AML maintenance and chemoresistance is crucial for the development of novel therapeutic approaches. The manifestation of pluripotency transcription factors (TFs) and their link to clinical outcomes have been documented in various tumors. This study investigates the correlation between core pluripotency TF and treatment in AML. We discovered that FLT3 inhibition induced upregulation of OCT4 and NANOG in FLT3-ITD<sup>+</sup> AML cells. Subsequently, we demonstrated that downregulation of OCT4 or NANOG inhibited cell growth, promoted apoptosis, and induced G0/G1 cell cycle phase arrest in FLT3-ITD<sup>+</sup> AML cells. Knockdown of OCT and NANOG inhibited tumor growth in a mouse tumor model. OCT4 promotes the malignant biological behavior of FLT3-ITD<sup>+</sup> AML by enhancing the abnormal FLT3 signaling pathway through transcriptional activation of NANOG. Importantly, downregulation of OCT4 or NANOG increased responsiveness to FLT3-tyrosine kinase inhibitor (TKI) (Gilteritinib), implying that OCT4 and NANOG may contribute to TKI resistance in FLT3-ITD<sup>+</sup> AML. Our study verifies the involvement of OCT4/NANOG in regulating TKI sensitivity and targeting them may improve the cytotoxicity of FLT3-TKIs in FLT3-ITD<sup>+</sup> AML.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"14 1","pages":"7"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-025-00553-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Up to 30% of acute myeloid leukemia (AML) patients face unfavorable outcomes due to the FMS-like receptor tyrosine kinase-3 (FLT3) internal tandem duplication (ITD) mutation. Although FLT3 inhibitors show encouraging outcomes in treatment, they fail to eliminate leukemia stem cells, the origin of persistent and resistant lesions. Exploration of the mechanism in FLT3-ITD+ AML maintenance and chemoresistance is crucial for the development of novel therapeutic approaches. The manifestation of pluripotency transcription factors (TFs) and their link to clinical outcomes have been documented in various tumors. This study investigates the correlation between core pluripotency TF and treatment in AML. We discovered that FLT3 inhibition induced upregulation of OCT4 and NANOG in FLT3-ITD+ AML cells. Subsequently, we demonstrated that downregulation of OCT4 or NANOG inhibited cell growth, promoted apoptosis, and induced G0/G1 cell cycle phase arrest in FLT3-ITD+ AML cells. Knockdown of OCT and NANOG inhibited tumor growth in a mouse tumor model. OCT4 promotes the malignant biological behavior of FLT3-ITD+ AML by enhancing the abnormal FLT3 signaling pathway through transcriptional activation of NANOG. Importantly, downregulation of OCT4 or NANOG increased responsiveness to FLT3-tyrosine kinase inhibitor (TKI) (Gilteritinib), implying that OCT4 and NANOG may contribute to TKI resistance in FLT3-ITD+ AML. Our study verifies the involvement of OCT4/NANOG in regulating TKI sensitivity and targeting them may improve the cytotoxicity of FLT3-TKIs in FLT3-ITD+ AML.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncogenesis
Oncogenesis ONCOLOGY-
CiteScore
11.90
自引率
0.00%
发文量
70
审稿时长
26 weeks
期刊介绍: Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信