A GLP-1 analogue optimized for cAMP-biased signaling improves weight loss in obese mice.

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jonathan D Douros, Aaron Novikoff, Barent DuBois, Rebecca Rohlfs, Jacek Mokrosinski, Wouter F J Hogendorf, Robert Augustin, Myrte Merkestein, Lene Brandt Egaa Martini, Lars Linderoth, Elliot Gerrard, Janos Tibor Kodra, Jenny Norlin, Nikolaj Kulahin Roed, Anouk Oldenburger, Stephanie A Mowery, Maria Waldhoer, Diego Perez-Tilve, Brian Finan, Steffen Reedtz-Runge, Timo D Müller, Patrick J Knerr
{"title":"A GLP-1 analogue optimized for cAMP-biased signaling improves weight loss in obese mice.","authors":"Jonathan D Douros, Aaron Novikoff, Barent DuBois, Rebecca Rohlfs, Jacek Mokrosinski, Wouter F J Hogendorf, Robert Augustin, Myrte Merkestein, Lene Brandt Egaa Martini, Lars Linderoth, Elliot Gerrard, Janos Tibor Kodra, Jenny Norlin, Nikolaj Kulahin Roed, Anouk Oldenburger, Stephanie A Mowery, Maria Waldhoer, Diego Perez-Tilve, Brian Finan, Steffen Reedtz-Runge, Timo D Müller, Patrick J Knerr","doi":"10.1016/j.molmet.2025.102124","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism is foundational to modern obesity pharmacotherapies. These compounds were engineered for maximal G protein alpha(s) (Gsα) signaling potency and downstream cAMP production. However, this strategy requires reconsideration as partial, biased GLP-1R agonists characterized by decreased Gsα signaling and disproportionate reductions in β-arrestin recruitment relative to the native ligand provide greater weight loss than full, balanced agonists in preclinical models.</p><p><strong>Methods: </strong>We tested the hypothesis that in vitro signaling bias, which considers both cAMP signaling and β-arrestin recruitment, better predicts weight loss efficacy in diet induced obese (DIO) rodents than cAMP potency alone.</p><p><strong>Results: </strong>Our data demonstrate that signaling bias significantly correlates to GLP-1R agonist mediated weight loss in diet-induced obese mice. We further characterized a protracted GLP-1 analogue (NNC5840) which exhibits a partial-Gsα, cAMP-biased GLP-1R signaling profile in vitro and demonstrates superior maximal body weight reduction compared to semaglutide in DIO mice. The NNC5840 weight loss profile is characterized by reduced in vivo potency but increased maximal efficacy.</p><p><strong>Conclusions: </strong>The data demonstrate that biased agonism is a strong predictor of in vivo efficacy for GLP-1R agonists independent of factors like intrinsic cAMP potency or pharmacokinetics. These data suggest that drug discovery screening strategies which take a holistic approach to target receptor signaling may provide more efficacious candidate molecules. The interpretations of these studies are limited by unknowns including how structural modifications to the biased GLP-1R agonist effect physiochemical properties of the molecules.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102124"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102124","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonism is foundational to modern obesity pharmacotherapies. These compounds were engineered for maximal G protein alpha(s) (Gsα) signaling potency and downstream cAMP production. However, this strategy requires reconsideration as partial, biased GLP-1R agonists characterized by decreased Gsα signaling and disproportionate reductions in β-arrestin recruitment relative to the native ligand provide greater weight loss than full, balanced agonists in preclinical models.

Methods: We tested the hypothesis that in vitro signaling bias, which considers both cAMP signaling and β-arrestin recruitment, better predicts weight loss efficacy in diet induced obese (DIO) rodents than cAMP potency alone.

Results: Our data demonstrate that signaling bias significantly correlates to GLP-1R agonist mediated weight loss in diet-induced obese mice. We further characterized a protracted GLP-1 analogue (NNC5840) which exhibits a partial-Gsα, cAMP-biased GLP-1R signaling profile in vitro and demonstrates superior maximal body weight reduction compared to semaglutide in DIO mice. The NNC5840 weight loss profile is characterized by reduced in vivo potency but increased maximal efficacy.

Conclusions: The data demonstrate that biased agonism is a strong predictor of in vivo efficacy for GLP-1R agonists independent of factors like intrinsic cAMP potency or pharmacokinetics. These data suggest that drug discovery screening strategies which take a holistic approach to target receptor signaling may provide more efficacious candidate molecules. The interpretations of these studies are limited by unknowns including how structural modifications to the biased GLP-1R agonist effect physiochemical properties of the molecules.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信