Element-specific estimation of background mutation rates in whole cancer genomes through transfer learning.

IF 6.8 1区 医学 Q1 ONCOLOGY
Farideh Bahari, Reza Ahangari Cohan, Hesam Montazeri
{"title":"Element-specific estimation of background mutation rates in whole cancer genomes through transfer learning.","authors":"Farideh Bahari, Reza Ahangari Cohan, Hesam Montazeri","doi":"10.1038/s41698-025-00871-3","DOIUrl":null,"url":null,"abstract":"<p><p>Mutational burden tests are essential for detecting signals of positive selection in cancer driver discovery by comparing observed mutation rates with background mutation rates (BMRs). However, accurate BMR estimation is challenging due to the diversity of mutational processes across genomes, complicating driver discovery efforts. Existing methods rely on various genomic regions and features for BMR estimation but lack a model that integrates both intergenic intervals and functional genomic elements on a comprehensive set of genomic features. Here, we introduce eMET (element-specific Mutation Estimator with boosted Trees), which employs 1372 (epi)genomic features from intergenic data and fine-tunes it with element-specific data through transfer learning. Applied to PCAWG somatic mutations, eMET significantly improves BMR accuracy and has potential to enhance driver discovery. Additionally, we provide an extensive analysis of BMR estimation, examining different machine learning models, genomic interval strategies, feature categories, and dimensionality reduction techniques.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"92"},"PeriodicalIF":6.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00871-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mutational burden tests are essential for detecting signals of positive selection in cancer driver discovery by comparing observed mutation rates with background mutation rates (BMRs). However, accurate BMR estimation is challenging due to the diversity of mutational processes across genomes, complicating driver discovery efforts. Existing methods rely on various genomic regions and features for BMR estimation but lack a model that integrates both intergenic intervals and functional genomic elements on a comprehensive set of genomic features. Here, we introduce eMET (element-specific Mutation Estimator with boosted Trees), which employs 1372 (epi)genomic features from intergenic data and fine-tunes it with element-specific data through transfer learning. Applied to PCAWG somatic mutations, eMET significantly improves BMR accuracy and has potential to enhance driver discovery. Additionally, we provide an extensive analysis of BMR estimation, examining different machine learning models, genomic interval strategies, feature categories, and dimensionality reduction techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信