{"title":"Clinical development of allogeneic chimeric antigen receptor αβ-T Cells.","authors":"Christos Georgiadis, Roland Preece, Waseem Qasim","doi":"10.1016/j.ymthe.2025.03.040","DOIUrl":null,"url":null,"abstract":"<p><p>Ready-made banks of allogeneic chimeric antigen receptor (CAR) T cells, produced to be available at the time of need, offer the prospect of accessible and cost-effective cellular therapies. Various strategies have been developed to overcome allogeneic barriers, drawing on cell engineering platforms including RNA interference, protein-based restriction and genome editing, including RNA-guided CRISPR-Cas and base editing tools. Alloreactivity and the risk of graft versus host disease from non-matched donor cells have been mitigated by disruption of αβ-T cell receptor expression on the surface of T cells, and stringent removal of any residual αβ-T cell populations. In addition, host mediated rejection has been tackled through a combination of augmented lymphodepletion and cell engineering strategies that have allowed infused cells to evade immune recognition or conferred resistance to lymphodepleting agents to promote persistence and expansion of effector populations. Early phase studies using 'off-the shelf' universal donor CAR T cells have been undertaken mainly in the context of blood malignancies, where emerging data of clinical responses have supported wider adoption and further applications. These developments offer the prospect of alternatives to current autologous approaches through the emerging application of genome engineering solutions to improve safety, persistence and function of universal donor products.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.040","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ready-made banks of allogeneic chimeric antigen receptor (CAR) T cells, produced to be available at the time of need, offer the prospect of accessible and cost-effective cellular therapies. Various strategies have been developed to overcome allogeneic barriers, drawing on cell engineering platforms including RNA interference, protein-based restriction and genome editing, including RNA-guided CRISPR-Cas and base editing tools. Alloreactivity and the risk of graft versus host disease from non-matched donor cells have been mitigated by disruption of αβ-T cell receptor expression on the surface of T cells, and stringent removal of any residual αβ-T cell populations. In addition, host mediated rejection has been tackled through a combination of augmented lymphodepletion and cell engineering strategies that have allowed infused cells to evade immune recognition or conferred resistance to lymphodepleting agents to promote persistence and expansion of effector populations. Early phase studies using 'off-the shelf' universal donor CAR T cells have been undertaken mainly in the context of blood malignancies, where emerging data of clinical responses have supported wider adoption and further applications. These developments offer the prospect of alternatives to current autologous approaches through the emerging application of genome engineering solutions to improve safety, persistence and function of universal donor products.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.