Fran Krstanović, Andrea Mihalić, Ahmad Seyar Rashidi, Katarzyna M Sitnik, Zsolt Ruzsics, Luka Čičin-Šain, Georges M G M Verjans, Stipan Jonjić, Ilija Brizić
{"title":"Neuron-restricted cytomegalovirus latency in the central nervous system regulated by CD4<sup>+</sup> T-cells and IFN-γ.","authors":"Fran Krstanović, Andrea Mihalić, Ahmad Seyar Rashidi, Katarzyna M Sitnik, Zsolt Ruzsics, Luka Čičin-Šain, Georges M G M Verjans, Stipan Jonjić, Ilija Brizić","doi":"10.1186/s12974-025-03422-6","DOIUrl":null,"url":null,"abstract":"<p><p>All human herpesviruses establish latency following the resolution of the primary infection. Among these, α-herpesviruses HSV-1, HSV-2 and VZV establish latency in neurons, whereas neurons are not traditionally considered a site of latency for other herpesviruses. Using a combination of in vivo murine models and ex vivo human fetal tissues, we discovered that cytomegalovirus (CMV), a ubiquitous β-herpesvirus, can persist in neurons and that CD4<sup>+</sup> T-cell-derived interferon-gamma is critical in restricting active viral replication in this cell type. Furthermore, we show that mouse CMV can establish latency in neurons and that CD4<sup>+</sup> T-cells are essential in preventing viral reactivation. Our findings may have translational significance because human cytomegalovirus (HCMV) is the leading cause of congenital viral infections resulting in neurodevelopmental and neuroinflammatory lesions with long-term functional sequelae.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"95"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03422-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
All human herpesviruses establish latency following the resolution of the primary infection. Among these, α-herpesviruses HSV-1, HSV-2 and VZV establish latency in neurons, whereas neurons are not traditionally considered a site of latency for other herpesviruses. Using a combination of in vivo murine models and ex vivo human fetal tissues, we discovered that cytomegalovirus (CMV), a ubiquitous β-herpesvirus, can persist in neurons and that CD4+ T-cell-derived interferon-gamma is critical in restricting active viral replication in this cell type. Furthermore, we show that mouse CMV can establish latency in neurons and that CD4+ T-cells are essential in preventing viral reactivation. Our findings may have translational significance because human cytomegalovirus (HCMV) is the leading cause of congenital viral infections resulting in neurodevelopmental and neuroinflammatory lesions with long-term functional sequelae.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.