{"title":"Molecular basis underlying the specificity of an antagonist AA92593 for mammalian melanopsins.","authors":"Kohei Obayashi, Ruisi Zou, Tomoki Kawaguchi, Toshifumi Mori, Hisao Tsukamoto","doi":"10.1016/j.jbc.2025.108461","DOIUrl":null,"url":null,"abstract":"<p><p>Melanopsin functions in intrinsically photosensitive retinal ganglion cells of mammals to regulate circadian clock and pupil constriction. The opsinamide AA92593 has been reported to specifically inhibit mouse and human melanopsin functions as a competitive antagonist against retinal; however, the molecular mechanisms underlying its specificity have not been resolved. In this study, we attempted to identify amino acid residues responsible for the susceptibility of mammalian melanopsins to AA92593. Our cell-based assays confirmed that AA92593 effectively inhibited the light-induced cellular responses of mammalian melanopsins, but not those of non-mammalian vertebrate and invertebrate melanopsins. These results suggest that amino acid residues specifically conserved among mammalian melanopsins are important for the antagonistic effect of AA92593, and we noticed Phe-94<sup>2.61</sup>, Ser-188<sup>ECL2</sup>, and Ser-269<sup>6.52</sup> as candidate residues. Substitutions of these residues reduced the antagonistic effect of AA92593. We conducted docking and molecular dynamics simulations based on the AlphaFold-predicted melanopsin structure. The simulations indicated that Phe-94<sup>2.61</sup>, Ser-188<sup>ECL2</sup>, and Ser-269<sup>6.52</sup> are located at the AA92593-binding site, and additionally identified Trp-189<sup>ECL2</sup> and Leu-207<sup>5.42</sup> interacting with the antagonist. Substitutions of Trp-189<sup>ECL2</sup> and Leu-207<sup>5.42</sup> affected the antagonistic effect of AA92593. Furthermore, substitutions of these amino acid residues converted the AA92593-insensitive non-mammalian melanopsins susceptible to the antagonist. Based on experiments and molecular simulations, five amino acid residues, at positions 94<sup>2.61</sup>, 188<sup>ECL2</sup>, 189<sup>ECL2</sup>, 207<sup>5.42</sup>, and 269<sup>6.52</sup>, were found to be responsible for the specific susceptibility of mammalian melanopsins to AA92593.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108461"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108461","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Melanopsin functions in intrinsically photosensitive retinal ganglion cells of mammals to regulate circadian clock and pupil constriction. The opsinamide AA92593 has been reported to specifically inhibit mouse and human melanopsin functions as a competitive antagonist against retinal; however, the molecular mechanisms underlying its specificity have not been resolved. In this study, we attempted to identify amino acid residues responsible for the susceptibility of mammalian melanopsins to AA92593. Our cell-based assays confirmed that AA92593 effectively inhibited the light-induced cellular responses of mammalian melanopsins, but not those of non-mammalian vertebrate and invertebrate melanopsins. These results suggest that amino acid residues specifically conserved among mammalian melanopsins are important for the antagonistic effect of AA92593, and we noticed Phe-942.61, Ser-188ECL2, and Ser-2696.52 as candidate residues. Substitutions of these residues reduced the antagonistic effect of AA92593. We conducted docking and molecular dynamics simulations based on the AlphaFold-predicted melanopsin structure. The simulations indicated that Phe-942.61, Ser-188ECL2, and Ser-2696.52 are located at the AA92593-binding site, and additionally identified Trp-189ECL2 and Leu-2075.42 interacting with the antagonist. Substitutions of Trp-189ECL2 and Leu-2075.42 affected the antagonistic effect of AA92593. Furthermore, substitutions of these amino acid residues converted the AA92593-insensitive non-mammalian melanopsins susceptible to the antagonist. Based on experiments and molecular simulations, five amino acid residues, at positions 942.61, 188ECL2, 189ECL2, 2075.42, and 2696.52, were found to be responsible for the specific susceptibility of mammalian melanopsins to AA92593.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.