Glycosaminoglycan modification of NRP1 exon 4-skipping variant drives colorectal cancer metastasis via endosomal-exosomal trafficking

IF 9.1 1区 医学 Q1 ONCOLOGY
Yiwei Gu , Qing Ye , Xiuping Huang , Yanan Cao , Luksana Chaiswing , Qing-Bai She
{"title":"Glycosaminoglycan modification of NRP1 exon 4-skipping variant drives colorectal cancer metastasis via endosomal-exosomal trafficking","authors":"Yiwei Gu ,&nbsp;Qing Ye ,&nbsp;Xiuping Huang ,&nbsp;Yanan Cao ,&nbsp;Luksana Chaiswing ,&nbsp;Qing-Bai She","doi":"10.1016/j.canlet.2025.217683","DOIUrl":null,"url":null,"abstract":"<div><div>Neuropilin-1 (NRP1) is a transmembrane glycoprotein that functions as a co-receptor with various cellular functions. Our previous studies identified the NRP1 exon 4-skipping (NRP1-ΔE4) splice variant as an aggressive metastasis driver by activating endosomal signals. Here, we demonstrate the critical role of glycosaminoglycan (GAG) modification in regulating NRP1-ΔE4’s cellular trafficking and oncogenic activity. NRP1-ΔE4 undergoes constitutive internalization into endosomes and subsequent exosomal release from colorectal cancer (CRC) cells. Exosomal NRP1-ΔE4 enhances the migration and invasion of both donor and recipient CRC cells. Genetic or pharmacological inhibition of exosome secretion, or immunodepletion of exosomal NRP1-ΔE4, markedly reduces its metastatic potential. Notably, GAG modification at the O-glycosylation site Ser612 is essential for NRP1-ΔE4’s endosomal trafficking and exosomal release. This modification also promotes the formation of a trimeric complex with Met and β1-integrin, leading to their co-internalization and accumulation in endosomes, which activates FAK signaling and drives CRC metastasis. These findings reveal GAG modification as a key regulatory process that governs the endosomal-exosomal trafficking of NRP1-ΔE4 to facilitate CRC cell dissemination.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"620 ","pages":"Article 217683"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525002496","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropilin-1 (NRP1) is a transmembrane glycoprotein that functions as a co-receptor with various cellular functions. Our previous studies identified the NRP1 exon 4-skipping (NRP1-ΔE4) splice variant as an aggressive metastasis driver by activating endosomal signals. Here, we demonstrate the critical role of glycosaminoglycan (GAG) modification in regulating NRP1-ΔE4’s cellular trafficking and oncogenic activity. NRP1-ΔE4 undergoes constitutive internalization into endosomes and subsequent exosomal release from colorectal cancer (CRC) cells. Exosomal NRP1-ΔE4 enhances the migration and invasion of both donor and recipient CRC cells. Genetic or pharmacological inhibition of exosome secretion, or immunodepletion of exosomal NRP1-ΔE4, markedly reduces its metastatic potential. Notably, GAG modification at the O-glycosylation site Ser612 is essential for NRP1-ΔE4’s endosomal trafficking and exosomal release. This modification also promotes the formation of a trimeric complex with Met and β1-integrin, leading to their co-internalization and accumulation in endosomes, which activates FAK signaling and drives CRC metastasis. These findings reveal GAG modification as a key regulatory process that governs the endosomal-exosomal trafficking of NRP1-ΔE4 to facilitate CRC cell dissemination.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer letters
Cancer letters 医学-肿瘤学
CiteScore
17.70
自引率
2.10%
发文量
427
审稿时长
15 days
期刊介绍: Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research. Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy. By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信