Paulina Kulig, Pijus Brazauskas, Madeleine Suffiotti, Emilie Raoult, Ulrike Babilonski, Bérengère Renault, Ursula Grieder, Enrico Vezzali, Peter Blattmann, Marianne M Martinic, Mark J Murphy
{"title":"Efficacy of IDOR-1117-2520, a novel, orally available CCR6 antagonist in preclinical models of skin dermatitis.","authors":"Paulina Kulig, Pijus Brazauskas, Madeleine Suffiotti, Emilie Raoult, Ulrike Babilonski, Bérengère Renault, Ursula Grieder, Enrico Vezzali, Peter Blattmann, Marianne M Martinic, Mark J Murphy","doi":"10.1111/bph.70025","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>The chemokine receptor CCR6 guides pathogenic T17 cells, implicated in autoimmune diseases including psoriasis, to sites of inflammation via the chemokine CCL20. Therefor, pharmacological inhibition of CCR6<sup>+</sup> immune cell migration provides a novel therapeutic approach. Translatability of such an intervention has not yet been assessed in detail. We evaluated the translatability of the Aldara® mouse model induced skin inflammation to psoriasis, with particular focus on immune cell trafficking and assessed the efficacy of IDOR-1117-2520, a highly selective, potent and orally available CCR6 small inhibitor.</p><p><strong>Experimental approach: </strong>Effects of IDOR-1117-2520 were investigated in the Aldara® and IL23 mouse models of skin inflammation using flow cytometry, RNA sequencing and transcriptome-based cell type deconvolution approaches to characterise immune cell migration patterns. These results were compared to human psoriasis transcriptomics data.</p><p><strong>Key results: </strong>IDOR-1117-2520 dose dependently reduced infiltration of CCR6<sup>+</sup> immune cells into inflamed skin, and was equally efficacious as IL-17 and IL-23 inhibition in models of skin inflammation. Pathway analysis showed molecular similarities in the immune response between human psoriasis and the Aldara® mouse model. IL-17/IL-23 pathway genes were expressed in both human psoriasis and the mouse model. CCR6 inhibition modulated multiple pathways associated with inflammation beyond the proximal IL-17/IL-23 pathway. A chemokine-chemokine receptor interaction map implicated CCL20-CCR6 as the dominant axis in recruiting pathogenic T17 cells in both the model and in human psoriasis.</p><p><strong>Conclusion and implications: </strong>IDOR-1117-2520 could provide a promising novel targeted approach to treating psoriasis and, potentially, other autoimmune diseases involving the CCR6/CCL20 axis and the IL-17/IL-23 pathway. IDOR-1117-2520 is currently being evaluated in a clinical phase 1 trial (ISRCTN28892128).</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.70025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: The chemokine receptor CCR6 guides pathogenic T17 cells, implicated in autoimmune diseases including psoriasis, to sites of inflammation via the chemokine CCL20. Therefor, pharmacological inhibition of CCR6+ immune cell migration provides a novel therapeutic approach. Translatability of such an intervention has not yet been assessed in detail. We evaluated the translatability of the Aldara® mouse model induced skin inflammation to psoriasis, with particular focus on immune cell trafficking and assessed the efficacy of IDOR-1117-2520, a highly selective, potent and orally available CCR6 small inhibitor.
Experimental approach: Effects of IDOR-1117-2520 were investigated in the Aldara® and IL23 mouse models of skin inflammation using flow cytometry, RNA sequencing and transcriptome-based cell type deconvolution approaches to characterise immune cell migration patterns. These results were compared to human psoriasis transcriptomics data.
Key results: IDOR-1117-2520 dose dependently reduced infiltration of CCR6+ immune cells into inflamed skin, and was equally efficacious as IL-17 and IL-23 inhibition in models of skin inflammation. Pathway analysis showed molecular similarities in the immune response between human psoriasis and the Aldara® mouse model. IL-17/IL-23 pathway genes were expressed in both human psoriasis and the mouse model. CCR6 inhibition modulated multiple pathways associated with inflammation beyond the proximal IL-17/IL-23 pathway. A chemokine-chemokine receptor interaction map implicated CCL20-CCR6 as the dominant axis in recruiting pathogenic T17 cells in both the model and in human psoriasis.
Conclusion and implications: IDOR-1117-2520 could provide a promising novel targeted approach to treating psoriasis and, potentially, other autoimmune diseases involving the CCR6/CCL20 axis and the IL-17/IL-23 pathway. IDOR-1117-2520 is currently being evaluated in a clinical phase 1 trial (ISRCTN28892128).
期刊介绍:
The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries.
Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues.
In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.