Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Yuxin Shi, Hao Zhang, Changhong Miao
{"title":"Metabolic reprogram and T cell differentiation in inflammation: current evidence and future perspectives.","authors":"Yuxin Shi, Hao Zhang, Changhong Miao","doi":"10.1038/s41420-025-02403-1","DOIUrl":null,"url":null,"abstract":"<p><p>T cell metabolism and differentiation significantly shape the initiation, progression, and resolution of inflammatory responses. Upon activation, T cells undergo extensive metabolic shifts to meet distinct functional demands across various inflammatory stages. These metabolic alterations are not only critical for defining different T cell subsets, but also for sustaining their activity in inflammatory environments. Key signaling pathways-including mTOR, HIF-1α, and AMPK regulate these metabolic adaptions, linking cellular energy states with T cell fate decisions. Insights into the metabolic regulation of T cells offer potential therapeutic strategies to manipulate T cell function, with implications for treating autoimmune diseases, chronic inflammation, and cancer by targeting specific metabolic pathways.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"123"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11953409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02403-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

T cell metabolism and differentiation significantly shape the initiation, progression, and resolution of inflammatory responses. Upon activation, T cells undergo extensive metabolic shifts to meet distinct functional demands across various inflammatory stages. These metabolic alterations are not only critical for defining different T cell subsets, but also for sustaining their activity in inflammatory environments. Key signaling pathways-including mTOR, HIF-1α, and AMPK regulate these metabolic adaptions, linking cellular energy states with T cell fate decisions. Insights into the metabolic regulation of T cells offer potential therapeutic strategies to manipulate T cell function, with implications for treating autoimmune diseases, chronic inflammation, and cancer by targeting specific metabolic pathways.

炎症中的代谢重编程和T细胞分化:目前的证据和未来的观点。
T细胞代谢和分化显著影响炎症反应的发生、进展和消退。激活后,T细胞经历广泛的代谢变化,以满足不同炎症阶段的不同功能需求。这些代谢改变不仅对定义不同的T细胞亚群至关重要,而且对维持它们在炎症环境中的活性也至关重要。包括mTOR、HIF-1α和AMPK在内的关键信号通路调节这些代谢适应,将细胞能量状态与T细胞命运决定联系起来。对T细胞代谢调节的深入了解为操纵T细胞功能提供了潜在的治疗策略,通过靶向特定的代谢途径治疗自身免疫性疾病、慢性炎症和癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信