A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer.
Xueqing Liu, Alaa Moamer, Roger Gomes da Silva, Aidan Shoham-Amizlev, Dana Hamam, Anwar Shams, Jean-Jacques Lebrun, Suhad Ali
{"title":"A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer.","authors":"Xueqing Liu, Alaa Moamer, Roger Gomes da Silva, Aidan Shoham-Amizlev, Dana Hamam, Anwar Shams, Jean-Jacques Lebrun, Suhad Ali","doi":"10.1038/s41419-025-07547-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular differentiation limits cellular plasticity allowing cells to attain their specialized functional characteristics and phenotypes, whereas loss of differentiation is a hallmark of cancer. Thus, characterizing mechanisms underlying differentiation is key to discover new cancer therapeutics. We report a novel functional antagonistic relationship between the prolactin (PRL)/prolactin receptor (PRLR) differentiation pathway and YAP-CCN2 oncogenic pathway in normal mammary epithelial cells and breast cancer cells that is essential for establishing/maintaining acinar morphogenesis, cell-cell junctions and the intracellular localization of apical-basal polarity protein complexes (Par, Crumb and Scrib). Importantly, using CRISPR knockout of the PRLR in MCF7, HR+ breast cancer cells, further revealed that the negative relationship between PRL/PRLR pathway and YAP-CCN2 pathway is critical in suppressing luminal-to-basal stem-like lineage plasticity. Furthermore, the clinical relevance of this interplay was evaluated using bioinformatics approaches on several human datasets, including samples from normal breast epithelium, breast cancer, and 33 other cancer types. This analysis revealed a positive correlation between PRLR and the YAP suppressor Hippo pathway and a co-expression gene network driving favourable patients' survival outcomes in breast cancer. The therapeutic potential of this interplay was also evaluated in vitro using MDA-MB-231 cells, a preclinical model of human triple-negative breast cancer, where treatment with PRL and Verteporfin, an FDA-approved pharmacological YAP-inhibitor, alone or their combination suppressed the expression of the mesenchymal marker vimentin and the stem cell marker CD44 as well as reduced their Ki67 proliferative marker expression. Collectively, our results emphasize the pro-differentiation role of PRL/PRLR pathway in mammary and breast cancer cells and highlight that promoting PRL/PRLR signaling while inhibiting the YAP-CCN2 oncogenic pathway can be exploited as a differentiation-based combination therapeutic strategy in breast cancer.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"221"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07547-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular differentiation limits cellular plasticity allowing cells to attain their specialized functional characteristics and phenotypes, whereas loss of differentiation is a hallmark of cancer. Thus, characterizing mechanisms underlying differentiation is key to discover new cancer therapeutics. We report a novel functional antagonistic relationship between the prolactin (PRL)/prolactin receptor (PRLR) differentiation pathway and YAP-CCN2 oncogenic pathway in normal mammary epithelial cells and breast cancer cells that is essential for establishing/maintaining acinar morphogenesis, cell-cell junctions and the intracellular localization of apical-basal polarity protein complexes (Par, Crumb and Scrib). Importantly, using CRISPR knockout of the PRLR in MCF7, HR+ breast cancer cells, further revealed that the negative relationship between PRL/PRLR pathway and YAP-CCN2 pathway is critical in suppressing luminal-to-basal stem-like lineage plasticity. Furthermore, the clinical relevance of this interplay was evaluated using bioinformatics approaches on several human datasets, including samples from normal breast epithelium, breast cancer, and 33 other cancer types. This analysis revealed a positive correlation between PRLR and the YAP suppressor Hippo pathway and a co-expression gene network driving favourable patients' survival outcomes in breast cancer. The therapeutic potential of this interplay was also evaluated in vitro using MDA-MB-231 cells, a preclinical model of human triple-negative breast cancer, where treatment with PRL and Verteporfin, an FDA-approved pharmacological YAP-inhibitor, alone or their combination suppressed the expression of the mesenchymal marker vimentin and the stem cell marker CD44 as well as reduced their Ki67 proliferative marker expression. Collectively, our results emphasize the pro-differentiation role of PRL/PRLR pathway in mammary and breast cancer cells and highlight that promoting PRL/PRLR signaling while inhibiting the YAP-CCN2 oncogenic pathway can be exploited as a differentiation-based combination therapeutic strategy in breast cancer.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism