Seth W Croslow, Chen H Sirois, Jonathan V Sweedler
{"title":"Factorial-Design-Based Optimization of a Commercial MALDI-2 timsTOF Mass Spectrometer for Lipid Analysis.","authors":"Seth W Croslow, Chen H Sirois, Jonathan V Sweedler","doi":"10.1021/jasms.4c00424","DOIUrl":null,"url":null,"abstract":"<p><p>Matrix-assisted laser desorption/ionization mass spectrometry with laser postionization (MALDI-2 MS) has become an important technique for the analysis of a wide range of biomolecules. It has traditionally been limited to custom lab-built setups until the recent introduction of a commercial timsTOF fleX MALDI-2 system. A comprehensive optimization of the timsTOF fleX system for lipid analysis was performed using a factorial design of experiments (DOE). By examining 13 instrumental parameters across three full factorial DOEs, we performed over 1500 individual runs to assess the impact and cross interactions of these parameters on the lipid signal intensity. We found optimal values for both ion transmission and MALDI-2 parameters to maximize the signals within the lipid region. These results show that laser shot frequency, collision RF, and pre pulse storage were essential for enhancing lipid ion transmission, resulting in a nearly 5-fold increase in signal intensity compared to default parameters. For MALDI-2 optimization, positive and negative modes showed similar optimized values, with TIMS In pressure and laser power being crucial. Overall, optimization of ion optics and MALDI-2 resulted in signal enhancements of nearly 2 orders of magnitude for certain lipid species.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00424","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry with laser postionization (MALDI-2 MS) has become an important technique for the analysis of a wide range of biomolecules. It has traditionally been limited to custom lab-built setups until the recent introduction of a commercial timsTOF fleX MALDI-2 system. A comprehensive optimization of the timsTOF fleX system for lipid analysis was performed using a factorial design of experiments (DOE). By examining 13 instrumental parameters across three full factorial DOEs, we performed over 1500 individual runs to assess the impact and cross interactions of these parameters on the lipid signal intensity. We found optimal values for both ion transmission and MALDI-2 parameters to maximize the signals within the lipid region. These results show that laser shot frequency, collision RF, and pre pulse storage were essential for enhancing lipid ion transmission, resulting in a nearly 5-fold increase in signal intensity compared to default parameters. For MALDI-2 optimization, positive and negative modes showed similar optimized values, with TIMS In pressure and laser power being crucial. Overall, optimization of ion optics and MALDI-2 resulted in signal enhancements of nearly 2 orders of magnitude for certain lipid species.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives