Huiyan An, Chongyu Shao, Yu He, Huifen Zhou, Ting Wang, Guanfeng Xu, Jiehong Yang, Haitong Wan
{"title":"Calycosin Inhibit PANoptosis and Alleviate Brain Damage: A Bioinformatics and Experimental Verification Approach.","authors":"Huiyan An, Chongyu Shao, Yu He, Huifen Zhou, Ting Wang, Guanfeng Xu, Jiehong Yang, Haitong Wan","doi":"10.1021/acschemneuro.5c00072","DOIUrl":null,"url":null,"abstract":"<p><p>PANoptosis is a newly identified form of cell death that encompasses pyroptosis, apoptosis, and necroptosis. Numerous studies have highlighted the significance of PANoptosis in brain ischemia-reperfusion (I/R) injury. Calycosin, a natural product with diverse biological activities, has demonstrated a significant reduction in neuronal death caused by ischemic brain injury by modulating multiple cell death pathways. In order to investigate the potential mechanisms underlying the neuroprotective role of calycosin in alleviating PANoptosis-induced damage in ischemic stroke therapy, we used mouse hippocampal neuronal cell line HT22 to stimulate ischemia in vitro through Oxygen and Glucose Deprivation/Reperfusion (OGD/R) and established molecular docking to assess the binding affinity of Calycosin with key targets and molecular dynamics simulations (MDS) to study the stability of the ligand-protein complex. The results demonstrate that Calycosin could improve the cell growth of HT22, leading to enhanced cell viability, reduced lactate dehydrogenase leakage, and decreased cell apoptosis after OGD/R. It also regulated the expression of PANoptosis-related genes such as NLRP3, GSDMD, MLKL, and RIPK1 and increased the Bcl-2/Bax ratio, effectively reducing cellular damage and providing protection. Molecular docking and MDS simulations demonstrated strong binding activity and stability between Calycosin and PANoptosis-related targets. Furthermore, Calycosin successfully passed the drug similarity (DS) evaluation and exhibited favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and biological activity. In conclusion, Calycosin could alleviate ischemic stroke by inhibiting PANoptosis, reducing neuronal inflammation and apoptosis, and improving damage caused by the OGD/R. Thus, it could serve as a potential therapy for ischemic stroke.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00072","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PANoptosis is a newly identified form of cell death that encompasses pyroptosis, apoptosis, and necroptosis. Numerous studies have highlighted the significance of PANoptosis in brain ischemia-reperfusion (I/R) injury. Calycosin, a natural product with diverse biological activities, has demonstrated a significant reduction in neuronal death caused by ischemic brain injury by modulating multiple cell death pathways. In order to investigate the potential mechanisms underlying the neuroprotective role of calycosin in alleviating PANoptosis-induced damage in ischemic stroke therapy, we used mouse hippocampal neuronal cell line HT22 to stimulate ischemia in vitro through Oxygen and Glucose Deprivation/Reperfusion (OGD/R) and established molecular docking to assess the binding affinity of Calycosin with key targets and molecular dynamics simulations (MDS) to study the stability of the ligand-protein complex. The results demonstrate that Calycosin could improve the cell growth of HT22, leading to enhanced cell viability, reduced lactate dehydrogenase leakage, and decreased cell apoptosis after OGD/R. It also regulated the expression of PANoptosis-related genes such as NLRP3, GSDMD, MLKL, and RIPK1 and increased the Bcl-2/Bax ratio, effectively reducing cellular damage and providing protection. Molecular docking and MDS simulations demonstrated strong binding activity and stability between Calycosin and PANoptosis-related targets. Furthermore, Calycosin successfully passed the drug similarity (DS) evaluation and exhibited favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and biological activity. In conclusion, Calycosin could alleviate ischemic stroke by inhibiting PANoptosis, reducing neuronal inflammation and apoptosis, and improving damage caused by the OGD/R. Thus, it could serve as a potential therapy for ischemic stroke.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research