Enam Alhagh Gorgich, Zahra Heidari, Hamidreza Mahmoudzadeh-Sagheb, Auob Rustamzadeh, Arash Shabani, Ali Amirzadeh, Bahram Haghi Ashtiani
{"title":"Brain Metabolite Profiles are Associated with Selective Neuronal Vulnerability and Underlying Mechanisms in Amyotrophic Lateral Sclerosis.","authors":"Enam Alhagh Gorgich, Zahra Heidari, Hamidreza Mahmoudzadeh-Sagheb, Auob Rustamzadeh, Arash Shabani, Ali Amirzadeh, Bahram Haghi Ashtiani","doi":"10.1021/acschemneuro.4c00593","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a lethal neurological syndrome accompanied by selective degeneration of somatic motor neurons and neurochemistry alterations. Nevertheless, eye movement's nuclei are relatively spared from ALS damage. This survey was to probe metabolite changes in the primary motor cortex (PMC) and interstitial nucleus of Cajal (INC) of ALS patients using proton magnetic resonance spectroscopy (<sup>1</sup>H-MRS). In this case-control study, 20 patients with ALS and 20 healthy controls underwent 1.5 T MRI and multivoxel <sup>1</sup>H-MRS. <sup>1</sup>H-MRS spectra to determine metabolite profiles including tNAA, mIns, tCr, tCho, and also tNAA/tCr, tNAA/tCho, and mIns/tNAA metabolite ratios from the PMC and INC were quantified via a point resolved spectroscopy pulse (PRESS) sequence in two groups. Further, the associations between <sup>1</sup>H-MRS markers with forced vital capacity (FVC), ALS functional rating scale (ALSFRS-R), and disease progression rate (ΔFS) were investigated. In the PMC, tNAA and tNAA/tCr were significantly lower in ALS patients than the healthy controls, but mIns and mIns/tNAA were significantly greater in these patients (<i>p</i> < 0.05). In the INC, tCho and mIns concentrations, and mIns/tNAA ratio were significantly increased (<i>p</i> < 0.05) in ALS patients, while tNAA and tNAA/tCr ratio did not show significant discriminations between the two groups (<i>p</i> > 0.05). The PMC tNAA/Cr ratio is associated with ALSFRS-R (<i>p</i> = 0.001, <i>r</i> = 0.71), FVC (<i>p</i> = 0.03, <i>r</i> = 0.58), and ΔFS (<i>p</i> = 0.01, <i>r</i> = -0.33). The mIns/tNAA ratio in PMC is also associated with ΔFS (<i>p</i> = 0.02, <i>r</i> = 0.41). In the INC, tCho concentrations (<i>p</i> = 0.04, <i>r</i> = -0.54) and mIns/tNAA ratio (<i>p</i> = 0.02, <i>r</i> = -0.38) were negatively associated with ALSFRS-R and positively correlated with ΔFS (<i>p</i> = 0.01, <i>r</i> = 0.33) and (<i>p</i> = 0.001, <i>r</i> = 0.61), respectively. The study suggests that neurochemistry changes in ALS patients' brains are linked to selective neuronal vulnerability and the underlying pathophysiology of the disease.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00593","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurological syndrome accompanied by selective degeneration of somatic motor neurons and neurochemistry alterations. Nevertheless, eye movement's nuclei are relatively spared from ALS damage. This survey was to probe metabolite changes in the primary motor cortex (PMC) and interstitial nucleus of Cajal (INC) of ALS patients using proton magnetic resonance spectroscopy (1H-MRS). In this case-control study, 20 patients with ALS and 20 healthy controls underwent 1.5 T MRI and multivoxel 1H-MRS. 1H-MRS spectra to determine metabolite profiles including tNAA, mIns, tCr, tCho, and also tNAA/tCr, tNAA/tCho, and mIns/tNAA metabolite ratios from the PMC and INC were quantified via a point resolved spectroscopy pulse (PRESS) sequence in two groups. Further, the associations between 1H-MRS markers with forced vital capacity (FVC), ALS functional rating scale (ALSFRS-R), and disease progression rate (ΔFS) were investigated. In the PMC, tNAA and tNAA/tCr were significantly lower in ALS patients than the healthy controls, but mIns and mIns/tNAA were significantly greater in these patients (p < 0.05). In the INC, tCho and mIns concentrations, and mIns/tNAA ratio were significantly increased (p < 0.05) in ALS patients, while tNAA and tNAA/tCr ratio did not show significant discriminations between the two groups (p > 0.05). The PMC tNAA/Cr ratio is associated with ALSFRS-R (p = 0.001, r = 0.71), FVC (p = 0.03, r = 0.58), and ΔFS (p = 0.01, r = -0.33). The mIns/tNAA ratio in PMC is also associated with ΔFS (p = 0.02, r = 0.41). In the INC, tCho concentrations (p = 0.04, r = -0.54) and mIns/tNAA ratio (p = 0.02, r = -0.38) were negatively associated with ALSFRS-R and positively correlated with ΔFS (p = 0.01, r = 0.33) and (p = 0.001, r = 0.61), respectively. The study suggests that neurochemistry changes in ALS patients' brains are linked to selective neuronal vulnerability and the underlying pathophysiology of the disease.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research