{"title":"Tumor-Derived Exosomal circ_0020095 Promotes Colon Cancer Cell Proliferation and Metastasis by Inhibiting M1 Macrophage Polarization","authors":"Yue Han, Zhe Zhou, Rudong Li, Hong Wang","doi":"10.1002/jbt.70225","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tumor-associated macrophages (TAM) have been shown to regulate colon cancer (CC) progression. However, it is not clear whether tumor-derived exosomal circular RNA (circRNA) regulates TAM to influence CC progression. The expression levels of circ_0020095, M1 macrophage markers, M2 macrophage markers, and interleukin-1 receptor-associated kinase 1 (IRAK1) were determined by qRT-PCR. Cell proliferation, migration and invasion were examined by EdU assay, wound healing assay and transwell assay. Exosomes derived from CC cells were used to treat M0 macrophages. M1 macrophage surface marker CD86 was detected by flow cytometry, and protein expression was examined by western blot. Then, the medium of exosome-treated M0 macrophages was used to culture CC cells to determine CC cell functions. RNA pull-down assay, RIP assay and dual-luciferase reporter assay were performed to validate interaction. Circ_0020095 had elevated expression in CC tissues and cells, and its knockdown repressed CC cell proliferation and metastasis. M0 macrophages could take by CC cell-derived exosomes to regulate circ_0020095 expression. Exosomal circ_0020095 restrained M1 macrophage polarization and increased M2 macrophage polarization to enhance CC cell progression. Besides, IRAK1 silencing could promote CC cell proliferation and metastasis by inhibiting M1 macrophage polarization, and its overexpression also abolished the effect of exosomal circ_0020095. Mechanistically, circ_0020095 could competitively bind to IGF2BP1 and then reduced the binding ability of IGF2BP1 and IRAK1 3'UTR. Tumor-derived exosomal circ_0020095 promoted CC cell progression via inhibiting M1 macrophage polarization through IGF2BP1/IRAK1 axis.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-associated macrophages (TAM) have been shown to regulate colon cancer (CC) progression. However, it is not clear whether tumor-derived exosomal circular RNA (circRNA) regulates TAM to influence CC progression. The expression levels of circ_0020095, M1 macrophage markers, M2 macrophage markers, and interleukin-1 receptor-associated kinase 1 (IRAK1) were determined by qRT-PCR. Cell proliferation, migration and invasion were examined by EdU assay, wound healing assay and transwell assay. Exosomes derived from CC cells were used to treat M0 macrophages. M1 macrophage surface marker CD86 was detected by flow cytometry, and protein expression was examined by western blot. Then, the medium of exosome-treated M0 macrophages was used to culture CC cells to determine CC cell functions. RNA pull-down assay, RIP assay and dual-luciferase reporter assay were performed to validate interaction. Circ_0020095 had elevated expression in CC tissues and cells, and its knockdown repressed CC cell proliferation and metastasis. M0 macrophages could take by CC cell-derived exosomes to regulate circ_0020095 expression. Exosomal circ_0020095 restrained M1 macrophage polarization and increased M2 macrophage polarization to enhance CC cell progression. Besides, IRAK1 silencing could promote CC cell proliferation and metastasis by inhibiting M1 macrophage polarization, and its overexpression also abolished the effect of exosomal circ_0020095. Mechanistically, circ_0020095 could competitively bind to IGF2BP1 and then reduced the binding ability of IGF2BP1 and IRAK1 3'UTR. Tumor-derived exosomal circ_0020095 promoted CC cell progression via inhibiting M1 macrophage polarization through IGF2BP1/IRAK1 axis.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.