Migratory microbiomes: the role of the gut microbiome in bird migration eco-physiology

IF 1.5 3区 生物学 Q1 ORNITHOLOGY
Pablo Capilla-Lasheras, Alice Risely
{"title":"Migratory microbiomes: the role of the gut microbiome in bird migration eco-physiology","authors":"Pablo Capilla-Lasheras,&nbsp;Alice Risely","doi":"10.1111/jav.03406","DOIUrl":null,"url":null,"abstract":"<p>Long-distance bird migration is one of the most metabolically and immunologically challenging feats in the animal kingdom, with birds often needing to double their weight in a matter of days and facing increased exposure to novel pathogens. The physiological and behavioural adaptations required to survive such journeys may be facilitated by the gut microbiome, a diverse community of symbiotic microbes that produce rare nutrients, fatty acids, and immune compounds that can confer rapid physiological adaptations to changing environmental conditions. However, the causal role of the gut microbiome in regulating migration physiology remains a mystery. In this review, we synthesize current knowledge of gut microbiome composition and function during migration, outline possible mechanisms by which changes in the gut microbiome could benefit migrants, and identify future research priorities. We find that active migration is usually associated with reduced diversity of the gut microbiome and with the expansion of several study-specific taxa. Additionally, some microbial traits have been found to correlate with host condition and fat deposits during migration. However, there remains little understanding of how changes in the gut microbiome during migration relate to most physiological parameters, the molecular mechanisms linking the gut microbiome to host physiology during migration, or the underlying ecological, dietary, and intrinsic drivers of gut microbiome changes across the migratory cycle. Our review draws from examples across non-migratory systems to explore how gut microbiomes could adaptively regulate physiological traits relevant to migration. We highlight the need for studies that connect gut and circulating metabolites and for experimental studies that test the underlying drivers of gut microbial and metabolite dynamics in controlled settings. Given its diverse physiological demands and ubiquity, bird migration presents an excellent model system to investigate the adaptive potential of the gut microbiome in natural populations.</p>","PeriodicalId":15278,"journal":{"name":"Journal of Avian Biology","volume":"2025 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jav.03406","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Avian Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jav.03406","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-distance bird migration is one of the most metabolically and immunologically challenging feats in the animal kingdom, with birds often needing to double their weight in a matter of days and facing increased exposure to novel pathogens. The physiological and behavioural adaptations required to survive such journeys may be facilitated by the gut microbiome, a diverse community of symbiotic microbes that produce rare nutrients, fatty acids, and immune compounds that can confer rapid physiological adaptations to changing environmental conditions. However, the causal role of the gut microbiome in regulating migration physiology remains a mystery. In this review, we synthesize current knowledge of gut microbiome composition and function during migration, outline possible mechanisms by which changes in the gut microbiome could benefit migrants, and identify future research priorities. We find that active migration is usually associated with reduced diversity of the gut microbiome and with the expansion of several study-specific taxa. Additionally, some microbial traits have been found to correlate with host condition and fat deposits during migration. However, there remains little understanding of how changes in the gut microbiome during migration relate to most physiological parameters, the molecular mechanisms linking the gut microbiome to host physiology during migration, or the underlying ecological, dietary, and intrinsic drivers of gut microbiome changes across the migratory cycle. Our review draws from examples across non-migratory systems to explore how gut microbiomes could adaptively regulate physiological traits relevant to migration. We highlight the need for studies that connect gut and circulating metabolites and for experimental studies that test the underlying drivers of gut microbial and metabolite dynamics in controlled settings. Given its diverse physiological demands and ubiquity, bird migration presents an excellent model system to investigate the adaptive potential of the gut microbiome in natural populations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Avian Biology
Journal of Avian Biology 生物-鸟类学
CiteScore
3.70
自引率
0.00%
发文量
56
审稿时长
3 months
期刊介绍: Journal of Avian Biology publishes empirical and theoretical research in all areas of ornithology, with an emphasis on behavioural ecology, evolution and conservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信