Resolving the Trade-Off Between Toxicity and Efficiency of CRISPR-Cas9 System for Genome Editing Within Escherichia coli

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Qian Guo, Qi Shen, Qi Hao, Xian-Long Jiang, Lu-Ping Zou, Ya-Ping Xue, Yu-Guo Zheng
{"title":"Resolving the Trade-Off Between Toxicity and Efficiency of CRISPR-Cas9 System for Genome Editing Within Escherichia coli","authors":"Qian Guo,&nbsp;Qi Shen,&nbsp;Qi Hao,&nbsp;Xian-Long Jiang,&nbsp;Lu-Ping Zou,&nbsp;Ya-Ping Xue,&nbsp;Yu-Guo Zheng","doi":"10.1002/biot.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Efficient gene editing of <i>Escherichia coli</i> BL21 (DE3) holds significant practical value as a host for heterologous protein expression. Recently reported CRISPR-Cas9 editing systems for this strain exhibit a trade-off between efficiency and toxicity. In this study, we addressed this trade-off by employing the strategy to transiently induce Cas9 expression in the high-copy plasmid during the editing stage. Furthermore, we demonstrated that eliminating the sgRNA-expressing plasmid using a temperature-sensitive replicon, combined with SacB for removing the Cas9-expressing plasmid, exhibited higher efficiency compared to previously reported strategies for editing system removal. We assigned this optimized CRISPR-Cas9 genome editing system as the pEBcas9/pEBsgRNA system, which has successfully achieved efficient five rounds of genome editing and simultaneous editing of multiple loci in <i>E. coli</i> BL21 (DE3). Using this system, we identified several loci suitable for multi-copy integrated expression of exogenous genes. Overall, the pEBcas9/pEBsgRNA system may facilitate the application of <i>E. coli</i> in both industrial and academic fields.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"20 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.70010","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient gene editing of Escherichia coli BL21 (DE3) holds significant practical value as a host for heterologous protein expression. Recently reported CRISPR-Cas9 editing systems for this strain exhibit a trade-off between efficiency and toxicity. In this study, we addressed this trade-off by employing the strategy to transiently induce Cas9 expression in the high-copy plasmid during the editing stage. Furthermore, we demonstrated that eliminating the sgRNA-expressing plasmid using a temperature-sensitive replicon, combined with SacB for removing the Cas9-expressing plasmid, exhibited higher efficiency compared to previously reported strategies for editing system removal. We assigned this optimized CRISPR-Cas9 genome editing system as the pEBcas9/pEBsgRNA system, which has successfully achieved efficient five rounds of genome editing and simultaneous editing of multiple loci in E. coli BL21 (DE3). Using this system, we identified several loci suitable for multi-copy integrated expression of exogenous genes. Overall, the pEBcas9/pEBsgRNA system may facilitate the application of E. coli in both industrial and academic fields.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信