Exact calculation of spectral properties of a particle interacting with a one-dimensional Fermi gas in optical lattices

IF 5.9
Xia-Ji Liu, Hui Hu
{"title":"Exact calculation of spectral properties of a particle interacting with a one-dimensional Fermi gas in optical lattices","authors":"Xia-Ji Liu,&nbsp;Hui Hu","doi":"10.1007/s43673-025-00149-7","DOIUrl":null,"url":null,"abstract":"<div><p>By using the exact Bethe wavefunctions of the one-dimensional Hubbard model with <i>N</i> spin-up fermions and one spin-down impurity, we derive an analytic expression of the impurity form factor, in the form of a determinant of a <span>\\((N+1)\\)</span> by <span>\\((N+1)\\)</span> matrix. This analytic expression enables us to exactly calculate spectral properties of one-dimensional Fermi polarons in lattices, when the masses of the impurity particle and the Fermi bath are equal. We present the impurity spectral function as functions of the on-site interaction strength and the filling factor of the Fermi bath, and discuss the origin of Fermi singularities in the spectral function at small momentum and the emergence of polaron quasiparticles at large momentum near the boundary of Brillouin zone. Our analytic expression of the impurity form factors pave the way to exploring the intriguing dynamics of a particle interacting with a Fermi bath. Our exact predictions on the impurity spectral function could be directly examined in cold-atom laboratories by using the radio-frequency spectroscopy and Ramsey spectroscopy.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"35 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-025-00149-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-025-00149-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By using the exact Bethe wavefunctions of the one-dimensional Hubbard model with N spin-up fermions and one spin-down impurity, we derive an analytic expression of the impurity form factor, in the form of a determinant of a \((N+1)\) by \((N+1)\) matrix. This analytic expression enables us to exactly calculate spectral properties of one-dimensional Fermi polarons in lattices, when the masses of the impurity particle and the Fermi bath are equal. We present the impurity spectral function as functions of the on-site interaction strength and the filling factor of the Fermi bath, and discuss the origin of Fermi singularities in the spectral function at small momentum and the emergence of polaron quasiparticles at large momentum near the boundary of Brillouin zone. Our analytic expression of the impurity form factors pave the way to exploring the intriguing dynamics of a particle interacting with a Fermi bath. Our exact predictions on the impurity spectral function could be directly examined in cold-atom laboratories by using the radio-frequency spectroscopy and Ramsey spectroscopy.

光学晶格中与一维费米气体相互作用的粒子光谱特性的精确计算
通过使用具有N个自旋向上费米子和一个自旋向下杂质的一维Hubbard模型的精确Bethe波函数,我们导出了杂质形式因子的解析表达式,其形式为\((N+1)\) × \((N+1)\)矩阵的行列式。当杂质粒子和费米槽的质量相等时,这个解析表达式使我们能够精确地计算晶格中一维费米极化子的谱性质。我们提出了杂质谱函数作为场址相互作用强度和费米槽填充因子的函数,并讨论了谱函数中小动量费米奇点的起源和布里渊带边界附近大动量极化子准粒子的出现。我们对杂质形状因子的解析表达式为探索粒子与费米槽相互作用的有趣动力学铺平了道路。我们对杂质谱函数的准确预测可以在冷原子实验室中使用射频光谱和拉姆齐光谱直接检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信