Edwin Barnes, Michael B. Bennett, Alexandra Boltasseva, Victoria Borish, Bennett Brown, Lincoln D. Carr, Russell R. Ceballos, Faith Dukes, Emily W. Easton, Sophia E. Economou, E. E. Edwards, Noah D. Finkelstein, C. Fracchiolla, Diana Franklin, J. K. Freericks, Valerie Goss, Mark Hannum, Nancy Holincheck, Angela M. Kelly, Olivia Lanes, H. J. Lewandowski, Karen Jo Matsler, Emily Mercurio, Inès Montaño, Maajida Murdock, Kiera Peltz, Justin K. Perron, Christopher J. K. Richardson, Jessica L. Rosenberg, Richard S. Ross, Minjung Ryu, Raymond E. Samuel, Nicole Schrode, Susan Schwamberger, Thomas A. Searles, Chandralekha Singh, Alexandra Tingle, Benjamin M. Zwickl
{"title":"Outcomes from a workshop on a national center for quantum education","authors":"Edwin Barnes, Michael B. Bennett, Alexandra Boltasseva, Victoria Borish, Bennett Brown, Lincoln D. Carr, Russell R. Ceballos, Faith Dukes, Emily W. Easton, Sophia E. Economou, E. E. Edwards, Noah D. Finkelstein, C. Fracchiolla, Diana Franklin, J. K. Freericks, Valerie Goss, Mark Hannum, Nancy Holincheck, Angela M. Kelly, Olivia Lanes, H. J. Lewandowski, Karen Jo Matsler, Emily Mercurio, Inès Montaño, Maajida Murdock, Kiera Peltz, Justin K. Perron, Christopher J. K. Richardson, Jessica L. Rosenberg, Richard S. Ross, Minjung Ryu, Raymond E. Samuel, Nicole Schrode, Susan Schwamberger, Thomas A. Searles, Chandralekha Singh, Alexandra Tingle, Benjamin M. Zwickl","doi":"10.1140/epjqt/s40507-025-00343-4","DOIUrl":null,"url":null,"abstract":"<div><p>In response to numerous programs seeking to advance quantum education and workforce development in the United States, experts from academia, industry, government, and professional societies convened for a National Science Foundation-sponsored workshop in February 2024 to explore the benefits and challenges of establishing a national center for quantum education. Broadly, such a center would foster collaboration and build the infrastructure required to develop a diverse and quantum-ready workforce. The workshop discussions focused on how a center could uniquely address gaps in public, K-12, and undergraduate quantum information science and engineering (QISE) education. Specifically, the community identified activities that, through a center, could lead to an increase in student awareness of quantum careers, boost the number of educators trained in quantum-related subjects, strengthen pathways into quantum careers, enhance the understanding of the US quantum workforce, and elevate public engagement with QISE. Core proposed activities for the center include professional development for educators, coordinated curriculum development and curation, expanded access to educational laboratory equipment, robust evaluation and assessment practices, network building, and enhanced public engagement with quantum science.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00343-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00343-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In response to numerous programs seeking to advance quantum education and workforce development in the United States, experts from academia, industry, government, and professional societies convened for a National Science Foundation-sponsored workshop in February 2024 to explore the benefits and challenges of establishing a national center for quantum education. Broadly, such a center would foster collaboration and build the infrastructure required to develop a diverse and quantum-ready workforce. The workshop discussions focused on how a center could uniquely address gaps in public, K-12, and undergraduate quantum information science and engineering (QISE) education. Specifically, the community identified activities that, through a center, could lead to an increase in student awareness of quantum careers, boost the number of educators trained in quantum-related subjects, strengthen pathways into quantum careers, enhance the understanding of the US quantum workforce, and elevate public engagement with QISE. Core proposed activities for the center include professional development for educators, coordinated curriculum development and curation, expanded access to educational laboratory equipment, robust evaluation and assessment practices, network building, and enhanced public engagement with quantum science.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.