{"title":"DAGAF: A directed acyclic generative adversarial framework for joint structure learning and tabular data synthesis","authors":"Hristo Petkov, Calum MacLellan, Feng Dong","doi":"10.1007/s10489-025-06410-8","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the causal relationships between data variables can provide crucial insights into the construction of tabular datasets. Most existing causality learning methods typically focus on applying a single identifiable causal model, such as the Additive Noise Model (ANM) or the Linear non-Gaussian Acyclic Model (LiNGAM), to discover the dependencies exhibited in observational data. We improve on this approach by introducing a novel dual-step framework capable of performing both causal structure learning and tabular data synthesis under multiple causal model assumptions. Our approach uses Directed Acyclic Graphs (DAG) to represent causal relationships among data variables. By applying various functional causal models including ANM, LiNGAM and the Post-Nonlinear model (PNL), we implicitly learn the contents of DAG to simulate the generative process of observational data, effectively replicating the real data distribution. This is supported by a theoretical analysis to explain the multiple loss terms comprising the objective function of the framework. Experimental results demonstrate that DAGAF outperforms many existing methods in structure learning, achieving significantly lower Structural Hamming Distance (SHD) scores across both real-world and benchmark datasets (Sachs: 47%, Child: 11%, Hailfinder: 5%, Pathfinder: 7% improvement compared to state-of-the-art), while being able to produce diverse, high-quality samples.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06410-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06410-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the causal relationships between data variables can provide crucial insights into the construction of tabular datasets. Most existing causality learning methods typically focus on applying a single identifiable causal model, such as the Additive Noise Model (ANM) or the Linear non-Gaussian Acyclic Model (LiNGAM), to discover the dependencies exhibited in observational data. We improve on this approach by introducing a novel dual-step framework capable of performing both causal structure learning and tabular data synthesis under multiple causal model assumptions. Our approach uses Directed Acyclic Graphs (DAG) to represent causal relationships among data variables. By applying various functional causal models including ANM, LiNGAM and the Post-Nonlinear model (PNL), we implicitly learn the contents of DAG to simulate the generative process of observational data, effectively replicating the real data distribution. This is supported by a theoretical analysis to explain the multiple loss terms comprising the objective function of the framework. Experimental results demonstrate that DAGAF outperforms many existing methods in structure learning, achieving significantly lower Structural Hamming Distance (SHD) scores across both real-world and benchmark datasets (Sachs: 47%, Child: 11%, Hailfinder: 5%, Pathfinder: 7% improvement compared to state-of-the-art), while being able to produce diverse, high-quality samples.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.