{"title":"Structured 3D gaussian splatting for novel view synthesis based on single RGB-LiDAR View","authors":"Libin Liu, Zhiqun Zhao, Wei Ma, Siyuan Zhang, Hongbin Zha","doi":"10.1007/s10489-025-06494-2","DOIUrl":null,"url":null,"abstract":"<div><p>3D scene reconstruction is a critical task in computer vision and graphics, with recent advancements in 3D Gaussian Splatting (3DGS) demonstrating impressive novel view synthesis (NVS) result. However, most 3DGS methods rely on multi-view images, which are not always available, particularly in outdoor environments. In this paper, we explore 3D scene reconstruction using only single-view data, comprising an RGB image and sparse point clouds from a LiDAR sensor. To address the challenges posed by limited reference and LiDAR sensor insufficient point clouds, we propose a voxel-based structured 3DGS framework enhanced with depth prediction. We introduce a novel depth prior guided voxel growing and pruning algorithm, which leverages predicted depth maps to refine scene structure and improve rendering quality. Furthermore, we design a virtual background fitting method with an adaptive voxel size to accommodate the sparse distribution of LiDAR data in outdoor scenes. Our approach surpasses existing methods, including Scaffold-GS, Gaussian-Pro, 3DGS, Mip-splatting and UniDepth, in terms of PSNR, SSIM, LPIPS and FID metrics on the KITTI and Waymo datasets, demonstrating its effectiveness in single-viewpoint 3D reconstruction and NVS.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06494-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
3D scene reconstruction is a critical task in computer vision and graphics, with recent advancements in 3D Gaussian Splatting (3DGS) demonstrating impressive novel view synthesis (NVS) result. However, most 3DGS methods rely on multi-view images, which are not always available, particularly in outdoor environments. In this paper, we explore 3D scene reconstruction using only single-view data, comprising an RGB image and sparse point clouds from a LiDAR sensor. To address the challenges posed by limited reference and LiDAR sensor insufficient point clouds, we propose a voxel-based structured 3DGS framework enhanced with depth prediction. We introduce a novel depth prior guided voxel growing and pruning algorithm, which leverages predicted depth maps to refine scene structure and improve rendering quality. Furthermore, we design a virtual background fitting method with an adaptive voxel size to accommodate the sparse distribution of LiDAR data in outdoor scenes. Our approach surpasses existing methods, including Scaffold-GS, Gaussian-Pro, 3DGS, Mip-splatting and UniDepth, in terms of PSNR, SSIM, LPIPS and FID metrics on the KITTI and Waymo datasets, demonstrating its effectiveness in single-viewpoint 3D reconstruction and NVS.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.