Generality-aware self-supervised transformer for multivariate time series anomaly detection

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yucheol Cho, Jae-Hyeok Lee, Gyeongdo Ham, Donggon Jang, Dae-shik Kim
{"title":"Generality-aware self-supervised transformer for multivariate time series anomaly detection","authors":"Yucheol Cho,&nbsp;Jae-Hyeok Lee,&nbsp;Gyeongdo Ham,&nbsp;Donggon Jang,&nbsp;Dae-shik Kim","doi":"10.1007/s10489-025-06481-7","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient identification of anomalies within multivariate time series data holds significant relevance in contemporary industrial settings. The challenge lies in swiftly and accurately pinpointing anomalous data points. This challenge is further compounded by factors such as the absence of labeled anomalies, data volatility, and the need for ultra-fast inference times. While previous approaches have introduced advanced deep learning models to address these challenges, comprehensive efforts to tackle all these issues simultaneously have been limited. Recent developments in unsupervised learning-based models have demonstrated remarkable performance. However, many of these models rely on reconstruction error as an anomaly score, making them sensitive to unseen normal data patterns. To address this limitation, we propose a novel framework, generality-aware self-supervised transformer for multivariate time series anomaly detection, which utilizes a transformer that effectively generalizes normal data patterns through self-knowledge distillation. Furthermore, we incorporate an auxiliary decoder to compute generality-based anomaly scores, thereby enhancing the differentiation between anomalous and normal data points in testing datasets. In our study, encompassing a diverse range of publicly available datasets and our own extracted data from linear motion (LM) guides and reducers built to model the vertical and rotational motions of robots, we establish the superior anomaly detection performance of our framework compared to existing state-of-the-art models. Notably, we verify that this improved performance is achieved while also considering time efficiency.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06481-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient identification of anomalies within multivariate time series data holds significant relevance in contemporary industrial settings. The challenge lies in swiftly and accurately pinpointing anomalous data points. This challenge is further compounded by factors such as the absence of labeled anomalies, data volatility, and the need for ultra-fast inference times. While previous approaches have introduced advanced deep learning models to address these challenges, comprehensive efforts to tackle all these issues simultaneously have been limited. Recent developments in unsupervised learning-based models have demonstrated remarkable performance. However, many of these models rely on reconstruction error as an anomaly score, making them sensitive to unseen normal data patterns. To address this limitation, we propose a novel framework, generality-aware self-supervised transformer for multivariate time series anomaly detection, which utilizes a transformer that effectively generalizes normal data patterns through self-knowledge distillation. Furthermore, we incorporate an auxiliary decoder to compute generality-based anomaly scores, thereby enhancing the differentiation between anomalous and normal data points in testing datasets. In our study, encompassing a diverse range of publicly available datasets and our own extracted data from linear motion (LM) guides and reducers built to model the vertical and rotational motions of robots, we establish the superior anomaly detection performance of our framework compared to existing state-of-the-art models. Notably, we verify that this improved performance is achieved while also considering time efficiency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信