Rui Liu, Camilla P. Frederiksen, Trine R. Rasmussen, Serafim Bakalis, Poul Erik Jensen, Svemir Rudić, Heloisa N. Bordallo, Ourania Gouseti
{"title":"Effect of Heat Treatment on the Molecular and Functional Properties of Pea Protein Isolate","authors":"Rui Liu, Camilla P. Frederiksen, Trine R. Rasmussen, Serafim Bakalis, Poul Erik Jensen, Svemir Rudić, Heloisa N. Bordallo, Ourania Gouseti","doi":"10.1007/s11483-025-09954-x","DOIUrl":null,"url":null,"abstract":"<div><p>This work aimed at understanding the effect of heat treatment on the properties and functionalities of pea protein isolate (PPI). PPI was characterised using thermogravimetric methods coupled with evolved gas analysis, differential scanning calorimetry, and X-Ray powder diffraction. As water is an integral component in determining protein properties, inelastic neutron scattering was further used to study water populations in the PPI powder. Hydration time was identified as key in determining solubility. Heat treatment resulted in partially denatured, more soluble, less thermodynamically stable, and less crystalline PPI compared to the control. Heating, often associated with protein aggregation and particle size increase, was found to reduce PPI particle sizes, which was attributed to the disruption of non-covalent interactions. During emulsification, these features enhanced formation of smaller drops, stable against coalescence. Compared to the control, the heat-treated PPI produced emulsions with increased shear thinning (power law index of 0.6 compared to 0.9) and consistency (≈10 times higher), as it has been previously reported for emulsions with fine, compared to coarse, droplets. Acid-induced gels of the heat-treated PPI were ≈4 times more elastic (G’) compared to the control. Overall, this work contributes towards the design of plant-based foods with predictable characteristics by understanding the link between protein physicochemical properties and food functionality.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-025-09954-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09954-x","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This work aimed at understanding the effect of heat treatment on the properties and functionalities of pea protein isolate (PPI). PPI was characterised using thermogravimetric methods coupled with evolved gas analysis, differential scanning calorimetry, and X-Ray powder diffraction. As water is an integral component in determining protein properties, inelastic neutron scattering was further used to study water populations in the PPI powder. Hydration time was identified as key in determining solubility. Heat treatment resulted in partially denatured, more soluble, less thermodynamically stable, and less crystalline PPI compared to the control. Heating, often associated with protein aggregation and particle size increase, was found to reduce PPI particle sizes, which was attributed to the disruption of non-covalent interactions. During emulsification, these features enhanced formation of smaller drops, stable against coalescence. Compared to the control, the heat-treated PPI produced emulsions with increased shear thinning (power law index of 0.6 compared to 0.9) and consistency (≈10 times higher), as it has been previously reported for emulsions with fine, compared to coarse, droplets. Acid-induced gels of the heat-treated PPI were ≈4 times more elastic (G’) compared to the control. Overall, this work contributes towards the design of plant-based foods with predictable characteristics by understanding the link between protein physicochemical properties and food functionality.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.