Experimental Investigation on the Influence of Ultrahigh Pressure Cold Briquetting Characteristics with Binders for Pulverized Coal in Hami Area

IF 0.8 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY
Sen Zhang, Haonan Fang, Yiming Gao
{"title":"Experimental Investigation on the Influence of Ultrahigh Pressure Cold Briquetting Characteristics with Binders for Pulverized Coal in Hami Area","authors":"Sen Zhang,&nbsp;Haonan Fang,&nbsp;Yiming Gao","doi":"10.3103/S0361521924700526","DOIUrl":null,"url":null,"abstract":"<p>Briquetting is a crucial component of clean coal technology. Pulverized coal from Naomao Lake coal mine in Hami area was selected as experimental sample to investigate the effects of binder and moisture content on briquette quality. The results show that binders can enhance relax density, compressive strength, hydrophobicity and durability. And, binder type has a significant impact on energy consumption during briquetting process. For cement and clay, as addition ratio increases, briquetting energy consumption also increases. For bentonite and sodium humate, addition ratio has a small impact on briquetting energy consumption. In addition, compressive strength, hydrophobicity and durability of briquettes gradually increase with the enhancement of moisture content. Moisture can provide effective lubrication during moulding process, reducing friction between raw materials and between raw materials and mold. Afterward, by using the PCA method, a new comprehensive evaluation index was established to investigate the influence of binder type and binder ratio on the quality characteristics of pulverized coal briquetting. The results show that comprehensive evaluation index of briquettes gradually increases with the enhancement of binder ratio, and the briquette containing 15% sodium humate has the highest comprehensive evaluation index, which confirms the reliability of the proposed evaluation method for briquette quality.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"59 2","pages":"77 - 87"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521924700526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Briquetting is a crucial component of clean coal technology. Pulverized coal from Naomao Lake coal mine in Hami area was selected as experimental sample to investigate the effects of binder and moisture content on briquette quality. The results show that binders can enhance relax density, compressive strength, hydrophobicity and durability. And, binder type has a significant impact on energy consumption during briquetting process. For cement and clay, as addition ratio increases, briquetting energy consumption also increases. For bentonite and sodium humate, addition ratio has a small impact on briquetting energy consumption. In addition, compressive strength, hydrophobicity and durability of briquettes gradually increase with the enhancement of moisture content. Moisture can provide effective lubrication during moulding process, reducing friction between raw materials and between raw materials and mold. Afterward, by using the PCA method, a new comprehensive evaluation index was established to investigate the influence of binder type and binder ratio on the quality characteristics of pulverized coal briquetting. The results show that comprehensive evaluation index of briquettes gradually increases with the enhancement of binder ratio, and the briquette containing 15% sodium humate has the highest comprehensive evaluation index, which confirms the reliability of the proposed evaluation method for briquette quality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid Fuel Chemistry
Solid Fuel Chemistry CHEMISTRY, MULTIDISCIPLINARY-ENERGY & FUELS
CiteScore
1.10
自引率
28.60%
发文量
52
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信