{"title":"SiamYOLOv8: a rapid conditional detection framework for one-shot object detection","authors":"Matthieu Desmarescaux, Wissam Kaddah, Ayman Alfalou, Isabelle Badoc","doi":"10.1007/s10489-025-06513-2","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning networks typically require vast amounts of labeled data for effective training. However, recent research has introduced a challenging task called One-Shot Object Detection, which addresses scenarios where certain classes are novel and unseen during training and represented by only a single labeled example. In this paper, we propose a novel One-Shot Object Detection model applicable to Conditional Detection without over-training on novel classes. Our approach leverages the strengths of YOLOv8 (You Only Look Once v8), a popular real-time object detector. Specifically, we incorporate a Siamese network and a matching module to enhance One-Shot Object Detection capabilities. Our proposed model, SiamYOLOv8, enables exploration of new applications without being limited by its training data. To evaluate the performance, we introduce a novel methodology for using the Retail Product Checkout (RPC) dataset “(https://github.com/MatD3mons/Conditional-Detection-datasets/tree/main/RPC)”, and extend our evaluation using the Grozi-3.2k dataset “(https://github.com/MatD3mons/Conditional-Detection-datasets/tree/main/GROZI-3.2k)”. In such contexts, new products often lack sufficient data for continuous Deep Learning methods, making individual case identification difficult. Our model outperforms SOTA models, achieving a significant performance improvement of 20.33% increase in Average Precision (+12.41 AP) on the Grozi-3.2k dataset and 25.68% increase (+17.37 AP) on the RPC dataset.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06513-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning networks typically require vast amounts of labeled data for effective training. However, recent research has introduced a challenging task called One-Shot Object Detection, which addresses scenarios where certain classes are novel and unseen during training and represented by only a single labeled example. In this paper, we propose a novel One-Shot Object Detection model applicable to Conditional Detection without over-training on novel classes. Our approach leverages the strengths of YOLOv8 (You Only Look Once v8), a popular real-time object detector. Specifically, we incorporate a Siamese network and a matching module to enhance One-Shot Object Detection capabilities. Our proposed model, SiamYOLOv8, enables exploration of new applications without being limited by its training data. To evaluate the performance, we introduce a novel methodology for using the Retail Product Checkout (RPC) dataset “(https://github.com/MatD3mons/Conditional-Detection-datasets/tree/main/RPC)”, and extend our evaluation using the Grozi-3.2k dataset “(https://github.com/MatD3mons/Conditional-Detection-datasets/tree/main/GROZI-3.2k)”. In such contexts, new products often lack sufficient data for continuous Deep Learning methods, making individual case identification difficult. Our model outperforms SOTA models, achieving a significant performance improvement of 20.33% increase in Average Precision (+12.41 AP) on the Grozi-3.2k dataset and 25.68% increase (+17.37 AP) on the RPC dataset.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.