Adaptive patch selection to improve Vision Transformers through Reinforcement Learning

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Francesco Cauteruccio, Michele Marchetti, Davide Traini, Domenico Ursino, Luca Virgili
{"title":"Adaptive patch selection to improve Vision Transformers through Reinforcement Learning","authors":"Francesco Cauteruccio,&nbsp;Michele Marchetti,&nbsp;Davide Traini,&nbsp;Domenico Ursino,&nbsp;Luca Virgili","doi":"10.1007/s10489-025-06516-z","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Transformers have revolutionized the management of Natural Language Processing tasks, and Vision Transformers (ViTs) promise to do the same for Computer Vision ones. However, the adoption of ViTs is hampered by their computational cost. Indeed, given an image divided into patches, it is necessary to compute for each layer the attention of each patch with respect to all the others. Researchers have proposed many solutions to reduce the computational cost of attention layers by adopting techniques such as quantization, knowledge distillation and manipulation of input images. In this paper, we aim to contribute to the solution of this problem. In particular, we propose a new framework, called AgentViT, which uses Reinforcement Learning to train an agent that selects the most important patches to improve the learning of a ViT. The goal of AgentViT is to reduce the number of patches processed by a ViT, and thus its computational load, while still maintaining competitive performance. We tested AgentViT on CIFAR10, FashionMNIST, and Imagenette<span>\\(^+\\)</span> (which is a subset of ImageNet) in the image classification task and obtained promising performance when compared to baseline ViTs and other related approaches available in the literature.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-025-06516-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06516-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Transformers have revolutionized the management of Natural Language Processing tasks, and Vision Transformers (ViTs) promise to do the same for Computer Vision ones. However, the adoption of ViTs is hampered by their computational cost. Indeed, given an image divided into patches, it is necessary to compute for each layer the attention of each patch with respect to all the others. Researchers have proposed many solutions to reduce the computational cost of attention layers by adopting techniques such as quantization, knowledge distillation and manipulation of input images. In this paper, we aim to contribute to the solution of this problem. In particular, we propose a new framework, called AgentViT, which uses Reinforcement Learning to train an agent that selects the most important patches to improve the learning of a ViT. The goal of AgentViT is to reduce the number of patches processed by a ViT, and thus its computational load, while still maintaining competitive performance. We tested AgentViT on CIFAR10, FashionMNIST, and Imagenette\(^+\) (which is a subset of ImageNet) in the image classification task and obtained promising performance when compared to baseline ViTs and other related approaches available in the literature.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信