Prediction of permeability of amended soil using ensembled artificial intelligence models

Ankit Kumar, Rohit Ahuja
{"title":"Prediction of permeability of amended soil using ensembled artificial intelligence models","authors":"Ankit Kumar,&nbsp;Rohit Ahuja","doi":"10.1007/s43503-025-00052-y","DOIUrl":null,"url":null,"abstract":"<div><p>Soil permeability is a critical parameter that dictates the movement of water through soil, and it impacts processes such as seepage, erosion, slope stability, foundation design, groundwater contamination, and various engineering applications. This study investigates the permeability of soil amended with waste foundry sand (WFS) at a replacement level of 10%. Permeability measurements are conducted for three distinct relative densities, spanning from 65% to 85%. The dataset compiled from these measurements is employed to develop ensemble artificial intelligence (AI) models. Specifically, four regressor AI models are considered: Nearest Neighbor (NNR), Decision Tree (DTR), Random Forest (RFR) and Support Vector Machine (SVR). These models are enhanced with four distinct base learners: Gradient Boosting (GB), Stacking Regressor (SR), AdaBoost Regressor (ADR), and XGBoost (XGB). The input parameters include fraction of base sand (BS), fraction of waste foundry sand (WFS), relative density (RD), duration of flow (T), quantity of flow (Q) and permeability (k), totalling 165 data points. Through comparative analysis, the Gradient Boost with Decision Tree (GB-DTR) model is found to be best-performed model, with R<sup>2</sup> = 0.9919. Sensitivity analysis reveals that Q is the most influential input parameter in predicting soil permeability.</p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-025-00052-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-025-00052-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soil permeability is a critical parameter that dictates the movement of water through soil, and it impacts processes such as seepage, erosion, slope stability, foundation design, groundwater contamination, and various engineering applications. This study investigates the permeability of soil amended with waste foundry sand (WFS) at a replacement level of 10%. Permeability measurements are conducted for three distinct relative densities, spanning from 65% to 85%. The dataset compiled from these measurements is employed to develop ensemble artificial intelligence (AI) models. Specifically, four regressor AI models are considered: Nearest Neighbor (NNR), Decision Tree (DTR), Random Forest (RFR) and Support Vector Machine (SVR). These models are enhanced with four distinct base learners: Gradient Boosting (GB), Stacking Regressor (SR), AdaBoost Regressor (ADR), and XGBoost (XGB). The input parameters include fraction of base sand (BS), fraction of waste foundry sand (WFS), relative density (RD), duration of flow (T), quantity of flow (Q) and permeability (k), totalling 165 data points. Through comparative analysis, the Gradient Boost with Decision Tree (GB-DTR) model is found to be best-performed model, with R2 = 0.9919. Sensitivity analysis reveals that Q is the most influential input parameter in predicting soil permeability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信