{"title":"Carbon Cloth with Graphene Films as Cathodic Microporous Layer in Air-Breathing Proton Exchange Membrane Fuel Cells (PEMFCs)","authors":"Zihao Chen, Zitong Huang, Liangliang Sun, Junbo Wang, Hailong Xiong, Haoyu Yang, Jinwen Yang","doi":"10.3103/S0361521924700575","DOIUrl":null,"url":null,"abstract":"<p>Enhancing the performance of PEMFCs significantly depends on the efficient diffusion of gases and the transport of water molecules. In this study, we utilized the high porosity and electrical conductivity of carbon fiber to promote the autonomous growth of lotus leaf graphene along the carbon fiber substrate. This innovation enables the creation of a gas cathode microporous layer for aspirated PEMFCs, which demonstrates high structural stability, minimal mass transfer resistance, and cost-effectiveness. Efficient gas diffusion and water transport are critical, as inadequate management of these factors can negatively impact battery lifespan and stability. The PEMFC cell with Gra/CC-60 exhibits a maximum current density of 1480 mA/cm<sup>2</sup>, outperforming other samples. Additionally, the peak power density reaches 398.9 mW/cm<sup>2</sup> at 0.43 V. Remarkably, after 12 hours of operation at high current density, the PEMFC cell shows only a 7.94% drop in current density. This research paves the way for the development of microporous layers for fuel cells, sensors, and catalytic modules, while also introducing a novel approach to the selection and design of carbon materials.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"59 2","pages":"155 - 163"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521924700575","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the performance of PEMFCs significantly depends on the efficient diffusion of gases and the transport of water molecules. In this study, we utilized the high porosity and electrical conductivity of carbon fiber to promote the autonomous growth of lotus leaf graphene along the carbon fiber substrate. This innovation enables the creation of a gas cathode microporous layer for aspirated PEMFCs, which demonstrates high structural stability, minimal mass transfer resistance, and cost-effectiveness. Efficient gas diffusion and water transport are critical, as inadequate management of these factors can negatively impact battery lifespan and stability. The PEMFC cell with Gra/CC-60 exhibits a maximum current density of 1480 mA/cm2, outperforming other samples. Additionally, the peak power density reaches 398.9 mW/cm2 at 0.43 V. Remarkably, after 12 hours of operation at high current density, the PEMFC cell shows only a 7.94% drop in current density. This research paves the way for the development of microporous layers for fuel cells, sensors, and catalytic modules, while also introducing a novel approach to the selection and design of carbon materials.
期刊介绍:
The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.