{"title":"A healthier stochastic semiclassical gravity: world without Schrödinger cats","authors":"Lajos Diósi","doi":"10.1007/s10714-025-03396-z","DOIUrl":null,"url":null,"abstract":"<div><p>Semiclassical gravity couples classical gravity to the quantized matter in meanfield approximation. The meanfield coupling is problematic for two reasons. First, it ignores the quantum fluctuation of matter distribution. Second, it violates the linearity of the quantum dynamics. The first problem can be be mitigated by allowing stochastic fluctuations of the geometry but the second problem lies deep in quantum foundations. Restoration of quantum linearity requires a conceptual approach to hybrid classical-quantum coupling. Studies of the measurement problem and the quantum-classical transition point the way to a solution. It is based on a postulated mechanism of spontaneous quantum monitoring plus feedback. This approach eliminates Schrödinger cat states, takes quantum fluctuations into the account, and restores the linearity of quantum dynamics. Such conceptionally ’healthier’ semiclassical theory is captivating, exists in the Newtonian limit, but its relativistic covariance hits a wall. Here we will briefly recapitulate the concept and its realization in the nonrelativistic limit. We emphasize that the long-known obstacles to the relativistic extension lie in quantum foundations.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03396-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03396-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Semiclassical gravity couples classical gravity to the quantized matter in meanfield approximation. The meanfield coupling is problematic for two reasons. First, it ignores the quantum fluctuation of matter distribution. Second, it violates the linearity of the quantum dynamics. The first problem can be be mitigated by allowing stochastic fluctuations of the geometry but the second problem lies deep in quantum foundations. Restoration of quantum linearity requires a conceptual approach to hybrid classical-quantum coupling. Studies of the measurement problem and the quantum-classical transition point the way to a solution. It is based on a postulated mechanism of spontaneous quantum monitoring plus feedback. This approach eliminates Schrödinger cat states, takes quantum fluctuations into the account, and restores the linearity of quantum dynamics. Such conceptionally ’healthier’ semiclassical theory is captivating, exists in the Newtonian limit, but its relativistic covariance hits a wall. Here we will briefly recapitulate the concept and its realization in the nonrelativistic limit. We emphasize that the long-known obstacles to the relativistic extension lie in quantum foundations.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.