Coupling oxygen storage and catalysis to design redox catalysts for efficient ethylbenzene dehydrogenation†

IF 4.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Juping Zhang , Jiayi Zhou , Dongfang Li , Tao Zhu , Xing Zhu
{"title":"Coupling oxygen storage and catalysis to design redox catalysts for efficient ethylbenzene dehydrogenation†","authors":"Juping Zhang ,&nbsp;Jiayi Zhou ,&nbsp;Dongfang Li ,&nbsp;Tao Zhu ,&nbsp;Xing Zhu","doi":"10.1039/d4cy01291g","DOIUrl":null,"url":null,"abstract":"<div><div>Chemical looping oxidative dehydrogenation (CL-ODH) is an alternative pathway for alkene production. Herein, we fabricated a series of MFe<sub>2</sub>O<sub>4</sub>@KFeO (M = Cu, Zn, or Mn) core–shell structured redox catalysts for the conversion of ethylbenzene CL-ODH into styrene. Owing to a high oxygen storage capacity of CuFe<sub>2</sub>O<sub>4</sub> around the dehydrogenation temperature (600 °C), CuFe<sub>2</sub>O<sub>4</sub>@KFeO exhibits the highest ODH reactivity among the three transition metal-based composites, achieving an ethylbenzene conversion of 65% with a stable styrene selectivity of 91% in 50 ethylbenzene/O<sub>2</sub> redox cycles. Compared with the traditional process, ethylbenzene CL-ODH technology shows great potential for energy saving and safety. The KFeO catalytic shell enables modification of oxygen donation ability and transforms the nonselective oxygen of CuFe<sub>2</sub>O<sub>4</sub> into well-matched lattice oxygen for selective hydrogen combustion (SHC) during ethylbenzene dehydrogenation. The coupling effect of the catalytic shell (KFeO) and oxygen storage core (CuFe<sub>2</sub>O<sub>4</sub>) is responsible for superior ODH performance, enabling catalytic dehydrogenation and SHC to pair in a spatiotemporal coordination mode. This study offers a new insight into coupling oxygen storage and catalysis <em>via</em> a mutually beneficial effect. The successful design of core–shell-structured redox catalysts for CL-ODH processes will offer an efficient and affordable solution for producing olefin.</div></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":"15 7","pages":"Pages 2303-2317"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475325000851","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical looping oxidative dehydrogenation (CL-ODH) is an alternative pathway for alkene production. Herein, we fabricated a series of MFe2O4@KFeO (M = Cu, Zn, or Mn) core–shell structured redox catalysts for the conversion of ethylbenzene CL-ODH into styrene. Owing to a high oxygen storage capacity of CuFe2O4 around the dehydrogenation temperature (600 °C), CuFe2O4@KFeO exhibits the highest ODH reactivity among the three transition metal-based composites, achieving an ethylbenzene conversion of 65% with a stable styrene selectivity of 91% in 50 ethylbenzene/O2 redox cycles. Compared with the traditional process, ethylbenzene CL-ODH technology shows great potential for energy saving and safety. The KFeO catalytic shell enables modification of oxygen donation ability and transforms the nonselective oxygen of CuFe2O4 into well-matched lattice oxygen for selective hydrogen combustion (SHC) during ethylbenzene dehydrogenation. The coupling effect of the catalytic shell (KFeO) and oxygen storage core (CuFe2O4) is responsible for superior ODH performance, enabling catalytic dehydrogenation and SHC to pair in a spatiotemporal coordination mode. This study offers a new insight into coupling oxygen storage and catalysis via a mutually beneficial effect. The successful design of core–shell-structured redox catalysts for CL-ODH processes will offer an efficient and affordable solution for producing olefin.

Abstract Image

耦合氧储存和催化设计高效乙苯脱氢氧化还原催化剂†
化学环氧化脱氢(CL-ODH)是烯烃生产的另一种途径。本文制备了一系列MFe2O4@KFeO (M = Cu, Zn或Mn)核壳结构的氧化还原催化剂,用于将乙苯CL-ODH转化为苯乙烯。由于CuFe2O4在脱氢温度(600℃)附近具有较高的储氧能力,CuFe2O4@KFeO在三种过渡金属基复合材料中表现出最高的ODH反应活性,在50次乙苯/O2氧化还原循环中,乙苯转化率为65%,苯乙烯选择性稳定为91%。与传统工艺相比,乙苯CL-ODH工艺显示出巨大的节能和安全潜力。KFeO催化壳可以修饰CuFe2O4的供氧能力,将CuFe2O4的非选择性氧转化为匹配良好的晶格氧,用于乙苯脱氢过程的选择性氢燃烧。催化壳层(KFeO)和储氧核层(CuFe2O4)的耦合效应是ODH性能优异的原因,使催化脱氢和SHC以时空协调模式配对。这项研究为通过互利效应耦合氧储存和催化提供了新的见解。对于CL-ODH工艺,核壳结构氧化还原催化剂的成功设计将为烯烃生产提供一种高效、经济的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信